Sum of the series 3, 20, 63, 144, ……
Find the sum of first n terms of the given series:
3, 20, 63, 144, .....
Examples:
Input : n = 2 Output : 23 Input : n =4 Output : 230
Approach:
First, we have to find the general term (Tn) of the given series.
series can we written in the following way also: (3 * 1^2), (5 * 2^2), (7 * 3^2), (9 * 4^2), .......up t n terms Tn = (General term of series 3, 5, 7, 9 ....) X (General term of series 1^2, 2^2, 3^2, 4^2 ....) Tn = (3 + (n-1) * 2) X ( n^2 ) Tn = 2*n^3 + n^2
We can write the sum of the series in the following ways:
Sn = 3 + 20 + 63 + 144 + ........up to the n terms[Tex]$$ Sn = 2 \times \sum_{n=1}^{n} n^{3} + \sum_{n=1}^{n} n^{2} $$[/Tex]Sn = 2 * (sum of n terms of n^3 ) + (sum of n terms of n^2)
Following are the formulas of sum of n terms of n^3 and n^2 :
Below is the implementation of the above approach:
C++
// C++ program to find the sum of n terms #include <bits/stdc++.h> using namespace std; int calculateSum( int n) { return (2 * pow ((n * (n + 1) / 2), 2)) + ((n * (n + 1) * (2 * n + 1)) / 6); } int main() { int n = 4; cout << "Sum = " << calculateSum(n) << endl; return 0; } |
Java
// Java program to find the sum of n terms import java.io.*; public class GFG { static int calculateSum( int n) { return ( int )(( 2 * Math.pow((n * (n + 1 ) / 2 ), 2 ))) + ((n * (n + 1 ) * ( 2 * n + 1 )) / 6 ); } public static void main (String[] args) { int n = 4 ; System.out.println( "Sum = " + calculateSum(n)); } } // This code is contributed by Raj |
Python3
# Python3 program to find the sum of n terms def calculateSum(n): return (( 2 * (n * (n + 1 ) / 2 ) * * 2 ) + ((n * (n + 1 ) * ( 2 * n + 1 )) / 6 )) #Driver code n = 4 print ( "Sum =" ,calculateSum(n)) # this code is contributed by Shashank_Sharma |
C#
// C# program to find the sum of n terms using System; class GFG { static int calculateSum( int n) { return ( int )((2 * Math.Pow((n * (n + 1) / 2), 2))) + ((n * (n + 1) * (2 * n + 1)) / 6); } // Driver Code public static void Main () { int n = 4; Console.WriteLine( "Sum = " + calculateSum(n)); } } // This code is contributed by anuj_67 |
PHP
<?php // PHP program to find the // sum of n terms function calculateSum( $n ) { return (2 * pow(( $n * ( $n + 1) / 2), 2)) + (( $n * ( $n + 1) * (2 * $n + 1)) / 6); } // Driver Code $n = 4; echo "Sum = " , calculateSum( $n ); // This code is contributed by ash264 ?> |
Javascript
<script> // javascript program to find the sum of n terms function calculateSum(n) { return parseInt(((2 * Math.pow((n * (n + 1) / 2), 2))) + ((n * (n + 1) * (2 * n + 1)) / 6)); } var n = 4; document.write( "Sum = " + calculateSum(n)); // This code contributed by shikhasingrajput </script> |
Output:
Sum = 230
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...