Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Sum of the series 3, 20, 63, 144, ……

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Find the sum of first n terms of the given series:
 

3, 20, 63, 144, .....

Examples: 
 

Input : n = 2
Output : 23

Input : n =4
Output : 230

Approach
First, we have to find the general term (Tn) of the given series. 
 

series can we written in the following way also:
(3 * 1^2), (5 * 2^2), (7 * 3^2), (9 * 4^2), .......up t n terms
Tn = (General term of series 3, 5, 7, 9 ....) X (General term of series 1^2, 2^2, 3^2, 4^2 ....)
Tn = (3 + (n-1) * 2) X ( n^2 )
Tn = 2*n^3 + n^2

We can write the sum of the series in the following ways: 
 

 Sn = 3 + 20 + 63 + 144 + ........up to the n terms

    $$    Sn = \sum_{n=1}^{n} T_{n} $$

[Tex]$$ Sn = 2 \times \sum_{n=1}^{n} n^{3} + \sum_{n=1}^{n} n^{2} $$[/Tex]Sn = 2 * (sum of n terms of n^3 ) + (sum of n terms of n^2)

Following are the formulas of sum of n terms of n^3 and n^2 : 

    $$ \sum_{n=1}^{n} n^{3} = \left[\frac{n \times \big(n + 1 \big) }{2} \right]^{2} $$ $$ \sum_{n=1}^{n} n^{2} = \frac{n \times \big(n + 1 \big) \times \big(2*n + 1 \big) }{6} $$

Total = 2 \times \left[\frac{n \times \big(n + 1 \big) }{2} \right]^{2} + \frac{n \times \big(n + 1 \big) \times \big(2*n + 1 \big) }{6}
Below is the implementation of the above approach: 
 

C++




// C++ program to find the sum of n terms
#include <bits/stdc++.h>
using namespace std;
int calculateSum(int n)
{
    return (2 * pow((n * (n + 1) / 2), 2)) +
           ((n * (n + 1) * (2 * n + 1)) / 6);
}
int main()
{
    int n = 4;
    cout << "Sum = " << calculateSum(n) << endl;
    return 0;
}

Java




// Java program to find the sum of n terms
import java.io.*;
 
public class GFG
{
    static int calculateSum(int n)
    {
        return (int)((2 * Math.pow((n * (n + 1) / 2), 2))) +
               ((n * (n + 1) * (2 * n + 1)) / 6);
    }
     
    public static void main (String[] args) {
     
        int n = 4;
        System.out.println("Sum = " +  calculateSum(n));
     
    }
}
// This code is contributed by Raj

Python3




# Python3 program to find the sum of n terms
 
def calculateSum(n):
    return ((2 * (n * (n + 1) / 2)**2) +
           ((n * (n + 1) * (2 * n + 1)) / 6))
     
#Driver code
 
n = 4
print("Sum =",calculateSum(n))
 
# this code is contributed by Shashank_Sharma

C#




// C# program to find the sum of n terms
using System;
 
class GFG
{
static int calculateSum(int n)
{
    return (int)((2 * Math.Pow((n * (n + 1) / 2), 2))) +
                     ((n * (n + 1) * (2 * n + 1)) / 6);
}
 
// Driver Code
public static void Main ()
{
    int n = 4;
    Console.WriteLine("Sum = " + calculateSum(n));
}
}
 
// This code is contributed by anuj_67

PHP




<?php
// PHP program to find the
// sum of n terms
 
function calculateSum($n)
{
    return (2 * pow(($n * ($n + 1) / 2), 2)) +
           (($n * ($n + 1) * (2 * $n + 1)) / 6);
}
 
// Driver Code
$n = 4;
echo "Sum = " , calculateSum($n);
 
// This code is contributed by ash264
?>

Javascript




<script>
 
// javascript program to find the sum of n terms
 
 
function calculateSum(n)
{
    return parseInt(((2 * Math.pow((n * (n + 1) / 2), 2))) +
           ((n * (n + 1) * (2 * n + 1)) / 6));
}
 
var n = 4;
document.write("Sum = " +  calculateSum(n));
 
// This code contributed by shikhasingrajput
</script>

Output: 

Sum = 230

 

Time Complexity: O(1)

Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 31 Aug, 2022
Like Article
Save Article
Similar Reads
Related Tutorials