Given a sorted array **A** of **n** integers. The task is to find the sum of the minimum of all possible subarrays of **A**.

**Examples:**

Input:A = [ 1, 2, 4, 5]Output:23

Subsequences are [1], [2], [4], [5], [1, 2], [2, 4], [4, 5] [1, 2, 4], [2, 4, 5], [1, 2, 4, 5]

Minimums are 1, 2, 4, 5, 1, 2, 4, 1, 2, 1.

Sum is 23Input:A = [1, 2, 3]Output:10

**Approach:** The Naive approach is to generate all possible subarrays, find their minimum and add them to the result. **Efficient Approach:** It is given that the array is sorted, so observe that the minimum element occurs N times, the second minimum occurs N-1 times, and so on… Let’s take an example:

arr[] = {1, 2, 3}

Subarrays are {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}

Minimum of each subarray: {1}, {2}, {3}, {1}, {2}, {1}.

where

1 occurs 3 times i.e. n times when n = 3.

2 occurs 2 times i.e. n-1 times when n = 3.

3 occurs 1 times i.e. n-2 times when n = 3.

So, traverse the array and add the current element i.e. (arr[i]* n-i) to the sum.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the sum` `// of minimum of all subarrays` `int` `findMinSum(` `int` `arr[], ` `int` `n)` `{` ` ` `int` `sum = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `sum += arr[i] * (n - i);` ` ` `return` `sum;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `arr[] = { 3, 5, 7, 8 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `cout << findMinSum(arr, n);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the above approach` `class` `GfG` `{` `// Function to find the sum` `// of minimum of all subarrays` `static` `int` `findMinSum(` `int` `arr[], ` `int` `n)` `{` ` ` `int` `sum = ` `0` `;` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `sum += arr[i] * (n - i);` ` ` `return` `sum;` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `arr[] = { ` `3` `, ` `5` `, ` `7` `, ` `8` `};` ` ` `int` `n = arr.length;` ` ` `System.out.println(findMinSum(arr, n));` `}` `}` `// This code is contributed by Prerna Saini` |

## Python3

`# Python3 implementation of the` `# above approach` `# Function to find the sum` `# of minimum of all subarrays` `def` `findMinSum(arr, n):` ` ` `sum` `=` `0` ` ` `for` `i ` `in` `range` `(` `0` `, n):` ` ` `sum` `+` `=` `arr[i] ` `*` `(n ` `-` `i)` ` ` `return` `sum` `# Driver code` `arr ` `=` `[` `3` `, ` `5` `, ` `7` `, ` `8` `]` `n ` `=` `len` `(arr)` `print` `(findMinSum(arr, n))` `# This code has been contributed` `# by 29AjayKumar` |

## C#

`// C# implementation of the above approach` `using` `System;` `class` `GfG` `{` `// Function to find the sum` `// of minimum of all subarrays` `static` `int` `findMinSum(` `int` `[]arr, ` `int` `n)` `{` ` ` `int` `sum = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `sum += arr[i] * (n - i);` ` ` `return` `sum;` `}` `// Driver code` `public` `static` `void` `Main(String []args)` `{` ` ` `int` `[]arr = { 3, 5, 7, 8 };` ` ` `int` `n = arr.Length;` ` ` `Console.WriteLine(findMinSum(arr, n));` `}` `}` `// This code is contributed by Arnab Kundu` |

## PHP

`<?php` `// PHP implementation of the above approach` `// Function to find the sum` `// of minimum of all subarrays` `function` `findMinSum(` `$arr` `,` `$n` `)` `{` ` ` `$sum` `= 0;` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$n` `; ` `$i` `++)` ` ` `$sum` `+= ` `$arr` `[` `$i` `] * (` `$n` `- ` `$i` `);` ` ` `return` `$sum` `;` `}` `// Driver code` `$arr` `= ` `array` `( 3, 5, 7, 8 );` `$n` `= ` `count` `(` `$arr` `);` `echo` `findMinSum(` `$arr` `, ` `$n` `);` ` ` `// This code is contributed by Arnab Kundu` `?>` |

## Javascript

`<script>` `// Javascript implementation of the above approach` `// Function to find the sum` `// of minimum of all subarrays` `function` `findMinSum(arr, n)` `{` ` ` `var` `sum = 0;` ` ` `for` `(` `var` `i = 0; i < n; i++)` ` ` `sum += arr[i] * (n - i);` ` ` `return` `sum;` `}` `// Driver code` `var` `arr = [ 3, 5, 7, 8 ];` `var` `n = arr.length;` `document.write( findMinSum(arr, n));` `</script>` |

**Output:**

49

**Note:** To find the **Sum of maximum element of all subarrays in a sorted array**, just traverse the array in reverse order and apply the same formula for Sum.

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**