Given an array ‘arr’ consisting of integers, the task is to find the non-empty subset such that its sum is closest to zero i.e. absolute difference between zero and the sum is minimum.
Examples:
Input : arr[] = {2, 2, 2, -4}
Output : 0
arr[0] + arr[1] + arr[3] = 0
That’s why answer is zero.
Input : arr[] = {1, 1, 1, 1}
Output : 1
One simple approach is to generate all possible subsets recursively and find the one with the sum closest to zero. Time complexity of this approach will be O(2^n).
A better approach will be using Dynamic programming in Pseudo Polynomial Time Complexity .
Let’s suppose sum of all the elements we have selected upto index ‘i-1’ is ‘S’. So, starting from index ‘i’, we have to find a subset with sum closest to -S.
Let’s define dp[i][S] first. It means sum of the subset of the subarray{i, N-1} of array ‘arr’ with sum closest to ‘-S’.
Now, we can include ‘i’ in the current sum or leave it. Thus we, have two possible paths to take. If we include ‘i’, current sum will be updated as S+arr[i] and we will solve for index ‘i+1’ i.e. dp[i+1][S+arr[i]] else we will solve for index ‘i+1’ directly. Thus, the required recurrence relation will be.
dp[i][s] = RetClose(arr[i]+dp[i][s+arr[i]], dp[i+1][s], -s);
where RetClose(a, b, c) returns a if |a-c|<|b-c| else it returns b
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
#define arrSize 51
#define maxSum 201
#define MAX 100
#define inf 999999
int dp[arrSize][maxSum];
bool visit[arrSize][maxSum];
int RetClose( int a, int b, int s)
{
if ( abs (a - s) < abs (b - s))
return a;
else
return b;
}
int MinDiff( int i, int sum, int arr[], int n)
{
if (i == n)
return 0;
if (visit[i][sum + MAX])
return dp[i][sum + MAX];
visit[i][sum + MAX] = 1;
dp[i][sum + MAX] = RetClose(arr[i] +
MinDiff(i + 1, sum + arr[i], arr, n),
MinDiff(i + 1, sum, arr, n), -1 * sum);
return dp[i][sum + MAX];
}
void FindClose( int arr[], int n)
{
int ans=inf;
for ( int i = 1; i <= n; i++)
ans = RetClose(arr[i - 1] +
MinDiff(i, arr[i - 1], arr, n), ans, 0);
cout<<ans<<endl;
}
int main()
{
int arr[] = { 25, -9, -10, -4, -7, -33 };
int n = sizeof (arr) / sizeof ( int );
FindClose(arr,n);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int arrSize = 51 ;
static int maxSum = 201 ;
static int MAX = 100 ;
static int inf = 999999 ;
static int dp[][] = new int [arrSize][maxSum];
static int visit[][] = new int [arrSize][maxSum];
static int RetClose( int a, int b, int s)
{
if (Math.abs(a - s) < Math.abs(b - s))
return a;
else
return b;
}
static int MinDiff( int i, int sum,
int arr[], int n)
{
if (i == n)
return 0 ;
if (visit[i][sum + MAX] > 0 )
return dp[i][sum + MAX];
visit[i][sum + MAX] = 1 ;
dp[i][sum + MAX] = RetClose(arr[i] +
MinDiff(i + 1 , sum + arr[i], arr, n),
MinDiff(i + 1 , sum, arr, n), - 1 * sum);
return dp[i][sum + MAX];
}
static void FindClose( int arr[], int n)
{
int ans = inf;
for ( int i = 1 ; i <= n; i++)
ans = RetClose(arr[i - 1 ] +
MinDiff(i, arr[i - 1 ],
arr, n), ans, 0 );
System.out.println(ans);
}
public static void main (String[] args)
{
int arr[] = { 25 , - 9 , - 10 , - 4 , - 7 , - 33 };
int n = arr.length;
FindClose(arr,n);
}
}
|
Python3
import numpy as np
arrSize = 51
maxSum = 201
MAX = 100
inf = 999999
dp = np.zeros((arrSize,maxSum));
visit = np.zeros((arrSize,maxSum));
def RetClose(a, b, s) :
if ( abs (a - s) < abs (b - s)) :
return a;
else :
return b;
def MinDiff(i, sum , arr, n) :
if (i = = n) :
return 0 ;
if (visit[i][ sum + MAX ]) :
return dp[i][ sum + MAX ];
visit[i][ sum + MAX ] = 1 ;
dp[i][ sum + MAX ] = RetClose(arr[i] +
MinDiff(i + 1 , sum + arr[i], arr, n),
MinDiff(i + 1 , sum , arr, n), - 1 * sum );
return dp[i][ sum + MAX ];
def FindClose(arr,n) :
ans = inf;
for i in range ( 1 , n + 1 ) :
ans = RetClose(arr[i - 1 ] +
MinDiff(i, arr[i - 1 ], arr, n), ans, 0 );
print (ans);
if __name__ = = "__main__" :
arr = [ 25 , - 9 , - 10 , - 4 , - 7 , - 33 ];
n = len (arr);
FindClose(arr,n);
|
C#
using System;
class GFG
{
static int arrSize = 51;
static int maxSum = 201;
static int MAX = 100;
static int inf = 999999;
static int [,]dp = new int [arrSize,maxSum];
static int [,]visit = new int [arrSize,maxSum];
static int RetClose( int a, int b, int s)
{
if (Math.Abs(a - s) < Math.Abs(b - s))
return a;
else
return b;
}
static int MinDiff( int i, int sum,
int []arr, int n)
{
if (i == n)
return 0;
if (visit[i,sum + MAX] > 0 )
return dp[i,sum + MAX];
visit[i,sum + MAX] = 1;
dp[i,sum + MAX] = RetClose(arr[i] +
MinDiff(i + 1, sum + arr[i], arr, n),
MinDiff(i + 1, sum, arr, n), -1 * sum);
return dp[i,sum + MAX];
}
static void FindClose( int []arr, int n)
{
int ans = inf;
for ( int i = 1; i <= n; i++)
ans = RetClose(arr[i - 1] +
MinDiff(i, arr[i - 1],
arr, n), ans, 0);
Console.WriteLine(ans);
}
public static void Main ()
{
int []arr = { 25, -9, -10, -4, -7, -33 };
int n = arr.Length;
FindClose(arr,n);
}
}
|
Javascript
<script>
let arrSize = 51;
let maxSum = 201;
let MAX = 100;
let inf = 999999;
let dp = new Array(arrSize);
let visit = new Array(arrSize);
for (let i = 0; i < arrSize; i++)
{
dp[i] = new Array(maxSum);
visit[i] = new Array(maxSum);
for (let j = 0; j < maxSum; j++)
{
dp[i][j] = 0;
visit[i][j] = 0;
}
}
function RetClose(a, b, s)
{
if (Math.abs(a - s) < Math.abs(b - s))
return a;
else
return b;
}
function MinDiff(i, sum, arr, n)
{
if (i == n)
return 0;
if (visit[i][sum + MAX] > 0 )
return dp[i][sum + MAX];
visit[i][sum + MAX] = 1;
dp[i][sum + MAX] = RetClose(arr[i] +
MinDiff(i + 1, sum + arr[i], arr, n),
MinDiff(i + 1, sum, arr, n), -1 * sum);
return dp[i][sum + MAX];
}
function FindClose(arr, n)
{
let ans = inf;
for (let i = 1; i <= n; i++)
ans = RetClose(arr[i - 1] +
MinDiff(i, arr[i - 1],
arr, n), ans, 0);
document.write(ans);
}
let arr = [ 25, -9, -10, -4, -7, -33 ];
let n = arr.length;
FindClose(arr,n);
</script>
|
Time complexity: O(N*S), where N is the number of elements in the array and S is the sum of all the numbers in the array.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 May, 2021
Like Article
Save Article