Split array into maximum subarrays such that every distinct element lies in a single subarray
Given an array, arr[] of size N, the task is to split the array into the maximum number of subarrays such that the first and the last occurrence of all distinct array element lies in a single subarray.
Examples:
Input: arr[] = {1, 1, 2, 2}
Output: 2
Explanation:
Split the array into subarrays {1, 1} and {2, 2}.
Therefore, the required output is 2.Input: arr[] = {1, 2, 4, 1, 4, 7, 7, 8}
Output: 3
Explanation:
Split the array into subarrays {1, 2, 4, 1, 4}, {7, 7} and {8}.
Therefore, the required output is 3.
Approach: The idea is to use Hashing to store the index of the last occurrence of every array element. Follow the steps below to solve the problem:
- Initialize an array, say hash[] to store the index of the last occurrence of every array element.
- Traverse the array and check if the maximum index of the last occurrence of all the previous elements of the current subarray is less than or equal to the current index, then increment the count by 1.
- Finally, print the value of count.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to maximize the // count of subarrays int maxCtSubarrays( int arr[], int N) { // Store the last index of // every array element int hash[1000001] = { 0 }; for ( int i = 0; i < N; i++) { hash[arr[i]] = i; } // Store the maximum index of the // last occurrence of all elements int maxIndex = -1; // Store the count of subarrays int res = 0; for ( int i = 0; i < N; i++) { maxIndex = max(maxIndex, hash[arr[i]]); // If maximum of last indices // previous elements is equal // to the current index if (maxIndex == i) { res++; } } // Return the count // of subarrays return res; } // Driver Code int main() { int arr[] = { 1, 2, 4, 1, 4, 7, 7, 8 }; int N = sizeof (arr) / sizeof (arr[0]); cout << maxCtSubarrays(arr, N); } |
Java
// Java program to implement // the above approach import java.util.*; class GFG { // Function to maximize the // count of subarrays static int maxCtSubarrays( int arr[], int N) { // Store the last index of // every array element int hash[] = new int [ 1000001 ]; for ( int i = 0 ; i < N; i++) { hash[arr[i]] = i; } // Store the maximum index of the // last occurrence of all elements int maxIndex = - 1 ; // Store the count of subarrays int res = 0 ; for ( int i = 0 ; i < N; i++) { maxIndex = Math.max(maxIndex, hash[arr[i]]); // If maximum of last indices // previous elements is equal // to the current index if (maxIndex == i) { res++; } } // Return the count // of subarrays return res; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 4 , 1 , 4 , 7 , 7 , 8 }; int N = arr.length; System.out.print(maxCtSubarrays(arr, N)); } } // This code is contributed by Chitranayal |
Python3
# Python3 program to implement # the above approach # Function to maximize the # count of subarrays def maxCtSubarrays(arr, N): # Store the last index of # every array element hash = [ 0 ] * ( 1000001 ) for i in range (N): hash [arr[i]] = i # Store the maximum index of the # last occurrence of all elements maxIndex = - 1 # Store the count of subarrays res = 0 for i in range (N): maxIndex = max (maxIndex, hash [arr[i]]) # If maximum of last indices # previous elements is equal # to the current index if (maxIndex = = i): res + = 1 # Return the count # of subarrays return res # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 4 , 1 , 4 , 7 , 7 , 8 ] N = len (arr) print (maxCtSubarrays(arr, N)) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; class GFG { // Function to maximize the // count of subarrays static int maxCtSubarrays( int []arr, int N) { // Store the last index of // every array element int []hash = new int [1000001]; for ( int i = 0; i < N; i++) { hash[arr[i]] = i; } // Store the maximum index of the // last occurrence of all elements int maxIndex = -1; // Store the count of subarrays int res = 0; for ( int i = 0; i < N; i++) { maxIndex = Math.Max(maxIndex, hash[arr[i]]); // If maximum of last indices // previous elements is equal // to the current index if (maxIndex == i) { res++; } } // Return the count // of subarrays return res; } // Driver Code public static void Main(String[] args) { int []arr = {1, 2, 4, 1, 4, 7, 7, 8}; int N = arr.Length; Console.Write(maxCtSubarrays(arr, N)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program to implement // the above approach // Function to maximize the // count of subarrays function maxCtSubarrays(arr, N) { // Store the last index of // every array element let hash = new Array(1000001).fill(0); for (let i = 0; i < N; i++) { hash[arr[i]] = i; } // Store the maximum index of the // last occurrence of all elements let maxIndex = -1; // Store the count of subarrays let res = 0; for (let i = 0; i < N; i++) { maxIndex = Math.max(maxIndex, hash[arr[i]]); // If maximum of last indices // previous elements is equal // to the current index if (maxIndex == i) { res++; } } // Return the count // of subarrays return res; } // Driver Code let arr = [1, 2, 4, 1, 4, 7, 7, 8]; let N = arr.length; document.write(maxCtSubarrays(arr, N)); // This code is contributed by avijitmondal1998. </script> |
3
Time Complexity: O(N)
Auxiliary Space: O(X) where X = 1000001
Related Topic: Subarrays, Subsequences, and Subsets in Array
Please Login to comment...