Given a sorted array **arr[]** of **N** integers and an integer **K**, the task is to split the array into **K** subarrays such that the sum of the difference of maximum and minimum element of each subarray is minimized.

**Examples:**

Input:arr[] = {1, 3, 3, 7}, K = 4

Output:0

Explanation:

The given array can be split into 4 subarrays as {1}, {3}, {3}, and {7}.

The difference between minimum and maximum of each subarray is:

1. {1}, difference = 1 – 1 = 0

2. {3}, difference = 3 – 3 = 0

3. {3}, difference = 3 – 3 = 0

4. {7}, difference = 7 – 7 = 0

Therefore, the sum all the difference is 0 which is minimized.

Input:arr[] = {4, 8, 15, 16, 23, 42}, K = 3

Output:12

Explanation:

The given array can be split into 3 subarrays as {4, 8, 15, 16}, {23}, and {42}.

The difference between minimum and maximum of each subarray is:

1. {4, 8, 15, 16}, difference = 16 – 12 = 0

2. {23}, difference = 23 – 23 = 0

3. {42}, difference = 42 – 42 = 0

Therefore, the sum all the difference is 12 which is minimized.

**Approach:** To split the given array into **K** subarrays with the given conditions, the idea is to split at indexes(say **i**) where the difference between elements **arr[i+1]** and **arr[i]** is largest. Below are the steps to implement this approach:

- Store the difference between consecutive pairs of elements in the given array
**arr[]**into another array(say**temp[]**). - Sort the array
**temp[]**in increasing order. - Intialise the total difference(say
**diff**) as the difference of first and last element of the given array**arr[]**. - Add the first
**K – 1**values from the array**temp[]**to the above difference. - The value stored in
**diff**is the minimum sum of the difference of maximum and minimum element of**K**subarray.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to find the subarray ` `int` `find(` `int` `a[], ` `int` `n, ` `int` `k) ` `{ ` ` ` `vector<` `int` `> v; ` ` ` ` ` `// Add the difference to vectors ` ` ` `for` `(` `int` `i = 1; i < n; ++i) { ` ` ` `v.push_back(a[i - 1] - a[i]); ` ` ` `} ` ` ` ` ` `// Sort vector to find minimum k ` ` ` `sort(v.begin(), v.end()); ` ` ` ` ` `// Initialize result ` ` ` `int` `res = a[n - 1] - a[0]; ` ` ` ` ` `// Adding first k-1 values ` ` ` `for` `(` `int` `i = 0; i < k - 1; ++i) { ` ` ` `res += v[i]; ` ` ` `} ` ` ` `// Return the minimized sum ` ` ` `return` `res; ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` `// Given array arr[] ` ` ` `int` `arr[] = { 4, 8, 15, 16, 23, 42 }; ` ` ` ` ` `int` `N = ` `sizeof` `(arr) / ` `sizeof` `(` `int` `); ` ` ` `// Given K ` `int` `K = 3; ` ` ` `// Function Call ` ` ` `cout << find(arr, N, K) << endl; ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program for the above approach ` `import` `java.util.*; ` ` ` `class` `GFG{ ` ` ` `// Function to find the subarray ` `static` `int` `find(` `int` `a[], ` `int` `n, ` `int` `k) ` `{ ` ` ` `Vector<Integer> v = ` `new` `Vector<Integer>(); ` ` ` ` ` `// Add the difference to vectors ` ` ` `for` `(` `int` `i = ` `1` `; i < n; ++i) ` ` ` `{ ` ` ` `v.add(a[i - ` `1` `] - a[i]); ` ` ` `} ` ` ` ` ` `// Sort vector to find minimum k ` ` ` `Collections.sort(v); ` ` ` ` ` `// Initialize result ` ` ` `int` `res = a[n - ` `1` `] - a[` `0` `]; ` ` ` ` ` `// Adding first k-1 values ` ` ` `for` `(` `int` `i = ` `0` `; i < k - ` `1` `; ++i) ` ` ` `{ ` ` ` `res += v.get(i); ` ` ` `} ` ` ` ` ` `// Return the minimized sum ` ` ` `return` `res; ` `} ` ` ` `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` ` ` ` ` `// Given array arr[] ` ` ` `int` `arr[] = { ` `4` `, ` `8` `, ` `15` `, ` `16` `, ` `23` `, ` `42` `}; ` ` ` ` ` `int` `N = arr.length; ` ` ` ` ` `// Given K ` ` ` `int` `K = ` `3` `; ` ` ` ` ` `// Function Call ` ` ` `System.out.print(find(arr, N, K) + ` `"\n"` `); ` `} ` `} ` ` ` `// This code is contributed by Amit Katiyar ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program for the above approach ` ` ` `# Function to find the subarray ` `def` `find(a, n, k): ` ` ` ` ` `v ` `=` `[] ` ` ` ` ` `# Add the difference to vectors ` ` ` `for` `i ` `in` `range` `(` `1` `, n): ` ` ` `v.append(a[i ` `-` `1` `] ` `-` `a[i]) ` ` ` ` ` `# Sort vector to find minimum k ` ` ` `v.sort() ` ` ` ` ` `# Initialize result ` ` ` `res ` `=` `a[n ` `-` `1` `] ` `-` `a[` `0` `] ` ` ` ` ` `# Adding first k-1 values ` ` ` `for` `i ` `in` `range` `(k ` `-` `1` `): ` ` ` `res ` `+` `=` `v[i] ` ` ` ` ` `# Return the minimized sum ` ` ` `return` `res ` ` ` `# Driver code ` `arr ` `=` `[ ` `4` `, ` `8` `, ` `15` `, ` `16` `, ` `23` `, ` `42` `] ` ` ` `# Length of array ` `N ` `=` `len` `(arr) ` ` ` `K ` `=` `3` ` ` `# Function Call ` `print` `(find(arr, N, K)) ` ` ` `# This code is contributed by sanjoy_62 ` |

*chevron_right*

*filter_none*

## C#

`// C# program for the above approach ` `using` `System; ` `using` `System.Collections.Generic; ` ` ` `class` `GFG{ ` ` ` `// Function to find the subarray ` `static` `int` `find(` `int` `[]a, ` `int` `n, ` `int` `k) ` `{ ` ` ` `List<` `int` `> v = ` `new` `List<` `int` `>(); ` ` ` ` ` `// Add the difference to vectors ` ` ` `for` `(` `int` `i = 1; i < n; ++i) ` ` ` `{ ` ` ` `v.Add(a[i - 1] - a[i]); ` ` ` `} ` ` ` ` ` `// Sort vector to find minimum k ` ` ` `v.Sort(); ` ` ` ` ` `// Initialize result ` ` ` `int` `res = a[n - 1] - a[0]; ` ` ` ` ` `// Adding first k-1 values ` ` ` `for` `(` `int` `i = 0; i < k - 1; ++i) ` ` ` `{ ` ` ` `res += v[i]; ` ` ` `} ` ` ` ` ` `// Return the minimized sum ` ` ` `return` `res; ` `} ` ` ` `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` ` ` ` ` `// Given array []arr ` ` ` `int` `[]arr = { 4, 8, 15, 16, 23, 42 }; ` ` ` `int` `N = arr.Length; ` ` ` ` ` `// Given K ` ` ` `int` `K = 3; ` ` ` ` ` `// Function Call ` ` ` `Console.Write(find(arr, N, K) + ` `"\n"` `); ` `} ` `} ` ` ` `// This code is contributed by Amit Katiyar ` |

*chevron_right*

*filter_none*

**Output:**

12

**Time Complexity:** *O(N)*, where N is the number of elements in the array.

**Auxiliary Space:** *O(N)*, where N is the number of elements in the array.

## Recommended Posts:

- Split array into two subarrays such that difference of their maximum is minimum
- Split array to three subarrays such that sum of first and third subarray is equal and maximum
- Min difference between maximum and minimum element in all Y size subarrays
- Count all subarrays whose sum can be split as difference of squares of two Integers
- Split an array into two equal Sum subarrays
- Split array in three equal sum subarrays
- Split array into K disjoint subarrays such that sum of each subarray is odd.
- Split the given array into K sub-arrays such that maximum sum of all sub arrays is minimum
- Split a binary string into K subsets minimizing sum of products of occurrences of 0 and 1
- Minimum difference between maximum and minimum value of Array with given Operations
- Minimize the maximum minimum difference after one removal from array
- Minimize difference between maximum and minimum of Array by at most K replacements
- Minimum and Maximum of all subarrays of size K using Map
- Number of subarrays whose minimum and maximum are same
- Minimize the difference between the maximum and minimum values of the modified array
- Minimum value of maximum absolute difference of all adjacent pairs in an Array
- Choose k array elements such that difference of maximum and minimum is minimized
- Sum of all differences between Maximum and Minimum of increasing Subarrays
- Sum of minimum and maximum elements of all subarrays of size k.
- Split N powers of 2 into two subsets such that their difference of sum is minimum

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.