Open In App
Related Articles

A sorting algorithm that slightly improves on selection sort

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

As we know, selection sort algorithm takes the minimum on every pass on the array, and place it at its correct position.
The idea is to take also the maximum on every pass and place it at its correct position. So in every pass, we keep track of both maximum and minimum and array becomes sorted from both ends.

Examples: 

First example: 7 8 5 4 9 2 
Input :pass 1:|7 8 5 4 9 2| 
       pass 2: 2|8 5 4 7|9
       pass 3: 2 4|5 7|8 9       
Output :A sorted array:  2 4 5 7 8 9

second example: 23 78 45 8 32 56 1      
Input :pass 1:|23 78 45 8 32 56 1|
       pass 2: 1|23 45 8 32 56 |78
       pass 3: 1 8|45 23 32|56 78
       pass 4: 1 8 23 |32|45 56 78
       in a case of odd elements, so one element
       left for sorting, so sorting stops and the
       array is sorted.
Output : A sorted array: 1 8 23 32 45 56 78

C++

// C++ program to implement min max selection
// sort.
#include <iostream>
using namespace std;
  
void minMaxSelectionSort(int* arr, int n)
{
    for (int i = 0, j = n - 1; i < j; i++, j--) {
        int min = arr[i], max = arr[i];
        int min_i = i, max_i = i;
        for (int k = i; k <= j; k++)  {
            if (arr[k] > max) {
                max = arr[k];
                max_i = k;
            } else if (arr[k] < min) {
                min = arr[k];
                min_i = k;
            }
        }
  
        // shifting the min.
        swap(arr[i], arr[min_i]);
  
        // Shifting the max. The equal condition
        // happens if we shifted the max to arr[min_i] 
        // in the previous swap.
        if (arr[min_i] == max) 
            swap(arr[j], arr[min_i]);
        else
            swap(arr[j], arr[max_i]);
    }
}
  
// Driver code
int main()
{
    int arr[] = { 23, 78, 45, 8, 32, 56, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    minMaxSelectionSort(arr, n);
    printf("Sorted array:\n");
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
    cout << endl;
    return 0;
}

                    

Java

// Java program to implement min max selection
// sort.
class GFG
{
static void minMaxSelectionSort(int[] arr, int n)
{
    for (int i = 0, j = n - 1; i < j; i++, j--) 
    {
        int min = arr[i], max = arr[i];
        int min_i = i, max_i = i;
        for (int k = i; k <= j; k++) 
        {
            if (arr[k] > max)
            {
                max = arr[k];
                max_i = k;
            
              
            else if (arr[k] < min) 
            {
                min = arr[k];
                min_i = k;
            }
        }
  
        // shifting the min.
        swap(arr, i, min_i);
  
        // Shifting the max. The equal condition
        // happens if we shifted the max to arr[min_i] 
        // in the previous swap.
        if (arr[min_i] == max) 
            swap(arr, j, min_i);
        else
            swap(arr, j, max_i);
    }
}
  
static int[] swap(int []arr, int i, int j)
{
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 23, 78, 45, 8, 32, 56, 1 };
    int n = arr.length;
    minMaxSelectionSort(arr, n);
    System.out.printf("Sorted array:\n");
    for (int i = 0; i < n; i++)
        System.out.print(arr[i] + " ");
    System.out.println("");
}
}
  
// This code is contributed by Princi Singh

                    

Python3

# Python3 program to implement min 
# max selection sort.
  
def minMaxSelectionSort(arr, n):
    i = 0
    j = n - 1
    while(i < j):
        min = arr[i]
        max = arr[i]
        min_i = i
        max_i = i
        for k in range(i, j + 1, 1):
            if (arr[k] > max):
                max = arr[k]
                max_i = k
            elif (arr[k] < min):
                min = arr[k]
                min_i = k
          
        # shifting the min.
        temp = arr[i]
        arr[i] = arr[min_i]
        arr[min_i] = temp
  
        # Shifting the max. The equal condition
        # happens if we shifted the max to 
        # arr[min_i] in the previous swap.
        if (arr[min_i] == max):
            temp = arr[j]
            arr[j] = arr[min_i]
            arr[min_i] = temp
        else:
            temp = arr[j]
            arr[j] = arr[max_i]
            arr[max_i] = temp
  
        i += 1
        j -= 1
  
    print("Sorted array:", end = " ")
    for i in range(n):
        print(arr[i], end = " "
  
# Driver code
if __name__== '__main__':
    arr = [23, 78, 45, 8, 32, 56, 1]
    n = len(arr)
    minMaxSelectionSort(arr, n)
      
# This code is contributed by
# Surendra_Gangwar

                    

C#

// C# program to implement min max selection
// sort.
using System;
  
class GFG
{
static void minMaxSelectionSort(int[] arr, int n)
{
    for (int i = 0, j = n - 1; 
             i < j; i++, j--) 
    {
        int min = arr[i], max = arr[i];
        int min_i = i, max_i = i;
        for (int k = i; k <= j; k++) 
        {
            if (arr[k] > max)
            {
                max = arr[k];
                max_i = k;
            
              
            else if (arr[k] < min) 
            {
                min = arr[k];
                min_i = k;
            }
        }
  
        // shifting the min.
        swap(arr, i, min_i);
  
        // Shifting the max. The equal condition
        // happens if we shifted the max to arr[min_i] 
        // in the previous swap.
        if (arr[min_i] == max) 
            swap(arr, j, min_i);
        else
            swap(arr, j, max_i);
    }
}
  
static int[] swap(int []arr, int i, int j)
{
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
  
// Driver code
public static void Main(String[] args)
{
    int []arr = { 23, 78, 45, 8, 32, 56, 1 };
    int n = arr.Length;
    minMaxSelectionSort(arr, n);
    Console.Write("Sorted array:\n");
    for (int i = 0; i < n; i++)
        Console.Write(arr[i] + " ");
    Console.WriteLine("");
}
}
  
// This code is contributed by Rajput-Ji

                    

Javascript

<script>
  
// Javascript program to implement min
// max selection sort. 
function swap(arr, xp, yp)
{
    var temp = arr[xp];
    arr[xp] = arr[yp];
    arr[yp] = temp;
}
  
function minMaxSelectionSort(arr, n)
{
    for(var i = 0, j = n - 1; i < j; i++, j--)
    {
        var min = arr[i];
        var max = arr[i];
        var min_i = i;
        var max_i = i;
          
        for(var k = i; k <= j; k++)
        {
            if (arr[k] > max)
            {
                max = arr[k];
                max_i = k;
            
            else if (arr[k] < min) 
            {
                min = arr[k];
                min_i = k;
            }
        }
  
        // Shifting the min.
        swap(arr, i, min_i);
  
        // Shifting the max. The equal condition
        // happens if we shifted the max to arr[min_i]
        // in the previous swap.
        if (arr[min_i] == max)
            swap(arr, j, min_i);
        else
            swap(arr, j, max_i);
    }
}
  
// Driver code
var arr = [ 23, 78, 45, 8, 32, 56, 1 ];
var n = 7;
  
minMaxSelectionSort(arr, n);
  
document.write("Sorted array:\n");
for(var i = 0; i < n; i++)
    document.write(arr[i] + " ");
      
document.write("<br>");
  
// This code is contributed by akshitsaxenaa09
  
</script>

                    

Output
Sorted array:
1 8 23 32 45 56 78 

Time Complexity: O(n*n)
Auxiliary space: O(1)




Last Updated : 18 Sep, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads