# Smallest number greater than or equal to N having sum of digits not exceeding S

Given integer N and integer S, the task is to find the smallest number greater than or equal to N such that the sum of its digits does not exceed S.

Examples:

Input: N = 3, S = 2
Output: 10
Explanation: Sum of digits of 10 is 1, which is less than 2.

Input: N = 19, S = 3
Output: 20
Explanation: Sum of digits of 20 is 2, which is less than 3.

Approach: The problem can be solved using a greedy approach. Follow the below steps to solve the problem.

1. Check if the sum of digits of N does not exceed S, return N.
2. Initialize a variable, say ans equal to the given integer N and k with 1 to store the powers of 10.
3. There can be at most 10 digits in the integer range.
4. Iterate from i = 0 to 8. At each iteration, calculate the last digit as (ans / k)%10.
5. The sum to make the last digit 0 is k*((10-last_digit)%10). Add it to ans.
6. Check the sum of digits of ans. If it does not exceed S, print ans and break. Otherwise, update k as k = k*10 and repeat the above steps.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ` `using` `namespace` `std;`   `// Function to calculate sum` `// digits of n` `int` `sum(``int` `n)` `{` `    ``int` `res = 0;` `    ``while` `(n > 0) {` `        ``res += n % 10;` `        ``n /= 10;` `    ``}` `    ``return` `res;` `}`   `// Function to find the smallest` `// possible integer satisfying the` `// given condition` `int` `smallestNumber(``int` `n, ``int` `s)` `{` `    ``// If the sum of digits` `    ``// is already smaller than S` `    ``if` `(sum(n) <= s) {` `        ``return` `n;` `    ``}`   `    ``// Initialize variables` `    ``int` `ans = n, k = 1;`   `    ``for` `(``int` `i = 0; i < 9; ++i) {`   `        ``// Finding last kth digit` `        ``int` `digit = (ans / k) % 10;`   `        ``// Add remaining to make digit 0` `        ``int` `add = k * ((10 - digit) % 10);`   `        ``ans += add;`   `        ``// If sum of digits` `        ``// does not exceed S` `        ``if` `(sum(ans) <= s) {` `            ``break``;` `        ``}`   `        ``// Update k` `        ``k *= 10;` `    ``}` `    ``return` `ans;` `}`   `// Driver Code` `int` `main()` `{`   `    ``// Given N and S` `    ``int` `N = 3, S = 2;`   `    ``// Function call` `    ``cout << smallestNumber(N, S) << endl;`   `    ``return` `0;` `}`

## Java

 `// Java program for the above approach` `import` `java.io.*;`   `class` `GFG{`   `// Function to calculate sum` `// digits of n` `static` `int` `sum(``int` `n)` `{` `    ``int` `res = ``0``;` `    ``while` `(n > ``0``) ` `    ``{` `        ``res += n % ``10``;` `        ``n /= ``10``;` `    ``}` `    ``return` `res;` `}`   `// Function to find the smallest` `// possible integer satisfying the` `// given condition` `static` `int` `smallestNumber(``int` `n, ``int` `s)` `{` `    `  `    ``// If the sum of digits` `    ``// is already smaller than S` `    ``if` `(sum(n) <= s) ` `    ``{` `        ``return` `n;` `    ``}`   `    ``// Initialize variables` `    ``int` `ans = n, k = ``1``;`   `    ``for``(``int` `i = ``0``; i < ``9``; ++i)` `    ``{` `        `  `        ``// Finding last kth digit` `        ``int` `digit = (ans / k) % ``10``;`   `        ``// Add remaining to make digit 0` `        ``int` `add = k * ((``10` `- digit) % ``10``);`   `        ``ans += add;`   `        ``// If sum of digits` `        ``// does not exceed S` `        ``if` `(sum(ans) <= s)` `        ``{` `            ``break``;` `        ``}`   `        ``// Update k` `        ``k *= ``10``;` `    ``}` `    ``return` `ans;` `}`   `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    `  `    ``// Given N and S` `    ``int` `N = ``3``, S = ``2``;`   `    ``// Function call` `    ``System.out.println(smallestNumber(N, S));` `}` `}`   `// This code is contributed by akhilsaini`

## Python3

 `# Python program for the above approach`   `# Function to calculate` `# sum of digits of n` `def` `sum``(n):` `    ``sm ``=` `0` `    ``while``(n > ``0``):` `        ``sm ``+``=` `n ``%` `10` `        ``n ``/``/``=` `10` `    ``return` `sm`   `# Function to find the smallest` `# possible integer satisfying the` `# given condition` `def` `smallestNumber(n, s):`   `# If sum of digits is` `# already smaller than s` `    ``if``(``sum``(n) <``=` `s):` `        ``return` `n`   `# Initialize variables` `    ``ans, k ``=` `n, ``1`   `    ``for` `i ``in` `range``(``9``):`   `# Find the k-th digit` `        ``digit ``=` `(ans ``/``/` `k) ``%` `10`   `# Add remaining` `        ``add ``=` `k ``*` `((``10` `-` `digit) ``%` `10``)`   `        ``ans ``+``=` `add`   `# If sum of digits ` `# does not exceed s` `        ``if``(``sum``(ans) <``=` `s):` `            ``break`   `# Update K` `        ``k ``*``=` `10`   `# Return answer` `    ``return` `ans`   `# Driver Code`   `# Given N and S` `n, s ``=` `3``, ``2`   `# Function call` `print``(smallestNumber(n, s))`

## C#

 `// C# program for the above approach` `using` `System;`   `class` `GFG{`   `// Function to calculate sum` `// digits of n` `static` `int` `sum(``int` `n)` `{` `    ``int` `res = 0;` `    ``while` `(n > 0)` `    ``{` `        ``res += n % 10;` `        ``n /= 10;` `    ``}` `    ``return` `res;` `}`   `// Function to find the smallest` `// possible integer satisfying the` `// given condition` `static` `int` `smallestNumber(``int` `n, ``int` `s)` `{` `    `  `    ``// If the sum of digits` `    ``// is already smaller than S` `    ``if` `(sum(n) <= s)` `    ``{` `        ``return` `n;` `    ``}`   `    ``// Initialize variables` `    ``int` `ans = n, k = 1;`   `    ``for``(``int` `i = 0; i < 9; ++i)` `    ``{` `        `  `        ``// Finding last kth digit` `        ``int` `digit = (ans / k) % 10;`   `        ``// Add remaining to make digit 0` `        ``int` `add = k * ((10 - digit) % 10);`   `        ``ans += add;`   `        ``// If sum of digits` `        ``// does not exceed S` `        ``if` `(sum(ans) <= s) ` `        ``{` `            ``break``;` `        ``}` `        `  `        ``// Update k` `        ``k *= 10;` `    ``}` `    ``return` `ans;` `}`   `// Driver Code` `public` `static` `void` `Main()` `{` `    `  `    ``// Given N and S` `    ``int` `N = 3, S = 2;`   `    ``// Function call` `    ``Console.WriteLine(smallestNumber(N, S));` `}` `}`   `// This code is contributed by akhilsaini`

## Javascript

 ``

Output:

`10`

Time Complexity: O(log210(N)) where N is the given integer.
Space Complexity: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next