Open In App
Related Articles

Smallest number greater than or equal to N having sum of digits not exceeding S

Improve Article
Improve
Save Article
Save
Like Article
Like

Given integer N and integer S, the task is to find the smallest number greater than or equal to N such that the sum of its digits does not exceed S.

Examples:

Input: N = 3, S = 2
Output: 10
Explanation: Sum of digits of 10 is 1, which is less than 2.

Input: N = 19, S = 3
Output: 20
Explanation: Sum of digits of 20 is 2, which is less than 3.

Approach: The problem can be solved using a greedy approach. Follow the below steps to solve the problem.

  1. Check if the sum of digits of N does not exceed S, return N.
  2. Initialize a variable, say ans equal to the given integer N and k with 1 to store the powers of 10.
  3. There can be at most 10 digits in the integer range.
  4. Iterate from i = 0 to 8. At each iteration, calculate the last digit as (ans / k)%10.
  5. The sum to make the last digit 0 is k*((10-last_digit)%10). Add it to ans.
  6. Check the sum of digits of ans. If it does not exceed S, print ans and break. Otherwise, update k as k = k*10 and repeat the above steps.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate sum
// digits of n
int sum(int n)
{
    int res = 0;
    while (n > 0) {
        res += n % 10;
        n /= 10;
    }
    return res;
}
 
// Function to find the smallest
// possible integer satisfying the
// given condition
int smallestNumber(int n, int s)
{
    // If the sum of digits
    // is already smaller than S
    if (sum(n) <= s) {
        return n;
    }
 
    // Initialize variables
    int ans = n, k = 1;
 
    for (int i = 0; i < 9; ++i) {
 
        // Finding last kth digit
        int digit = (ans / k) % 10;
 
        // Add remaining to make digit 0
        int add = k * ((10 - digit) % 10);
 
        ans += add;
 
        // If sum of digits
        // does not exceed S
        if (sum(ans) <= s) {
            break;
        }
 
        // Update k
        k *= 10;
    }
    return ans;
}
 
// Driver Code
int main()
{
 
    // Given N and S
    int N = 3, S = 2;
 
    // Function call
    cout << smallestNumber(N, S) << endl;
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to calculate sum
// digits of n
static int sum(int n)
{
    int res = 0;
    while (n > 0)
    {
        res += n % 10;
        n /= 10;
    }
    return res;
}
 
// Function to find the smallest
// possible integer satisfying the
// given condition
static int smallestNumber(int n, int s)
{
     
    // If the sum of digits
    // is already smaller than S
    if (sum(n) <= s)
    {
        return n;
    }
 
    // Initialize variables
    int ans = n, k = 1;
 
    for(int i = 0; i < 9; ++i)
    {
         
        // Finding last kth digit
        int digit = (ans / k) % 10;
 
        // Add remaining to make digit 0
        int add = k * ((10 - digit) % 10);
 
        ans += add;
 
        // If sum of digits
        // does not exceed S
        if (sum(ans) <= s)
        {
            break;
        }
 
        // Update k
        k *= 10;
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N and S
    int N = 3, S = 2;
 
    // Function call
    System.out.println(smallestNumber(N, S));
}
}
 
// This code is contributed by akhilsaini


Python3




# Python program for the above approach
 
# Function to calculate
# sum of digits of n
def sum(n):
    sm = 0
    while(n > 0):
        sm += n % 10
        n //= 10
    return sm
 
# Function to find the smallest
# possible integer satisfying the
# given condition
def smallestNumber(n, s):
 
# If sum of digits is
# already smaller than s
    if(sum(n) <= s):
        return n
 
# Initialize variables
    ans, k = n, 1
 
    for i in range(9):
 
# Find the k-th digit
        digit = (ans // k) % 10
 
# Add remaining
        add = k * ((10 - digit) % 10)
 
        ans += add
 
# If sum of digits
# does not exceed s
        if(sum(ans) <= s):
            break
 
# Update K
        k *= 10
 
# Return answer
    return ans
 
# Driver Code
 
# Given N and S
n, s = 3, 2
 
# Function call
print(smallestNumber(n, s))


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to calculate sum
// digits of n
static int sum(int n)
{
    int res = 0;
    while (n > 0)
    {
        res += n % 10;
        n /= 10;
    }
    return res;
}
 
// Function to find the smallest
// possible integer satisfying the
// given condition
static int smallestNumber(int n, int s)
{
     
    // If the sum of digits
    // is already smaller than S
    if (sum(n) <= s)
    {
        return n;
    }
 
    // Initialize variables
    int ans = n, k = 1;
 
    for(int i = 0; i < 9; ++i)
    {
         
        // Finding last kth digit
        int digit = (ans / k) % 10;
 
        // Add remaining to make digit 0
        int add = k * ((10 - digit) % 10);
 
        ans += add;
 
        // If sum of digits
        // does not exceed S
        if (sum(ans) <= s)
        {
            break;
        }
         
        // Update k
        k *= 10;
    }
    return ans;
}
 
// Driver Code
public static void Main()
{
     
    // Given N and S
    int N = 3, S = 2;
 
    // Function call
    Console.WriteLine(smallestNumber(N, S));
}
}
 
// This code is contributed by akhilsaini


Javascript




<script>
// javascript program for the above approach
 
// Function to calculate sum
// digits of n
function sum(n)
{
    var res = 0;
    while (n > 0)
    {
        res += n % 10;
        n /= 10;
    }
    return res;
}
 
// Function to find the smallest
// possible integer satisfying the
// given condition
function smallestNumber(n , s)
{
     
    // If the sum of digits
    // is already smaller than S
    if (sum(n) <= s)
    {
        return n;
    }
 
    // Initialize variables
    var ans = n, k = 1;
 
    for(i = 0; i < 9; ++i)
    {
         
        // Finding last kth digit
        var digit = (ans / k) % 10;
 
        // Add remaining to make digit 0
        var add = k * ((10 - digit) % 10);
 
        ans += add;
 
        // If sum of digits
        // does not exceed S
        if (sum(ans) <= s)
        {
            break;
        }
 
        // Update k
        k *= 10;
    }
    return ans;
}
 
// Driver Code
 
// Given N and S
var N = 3, S = 2;
 
// Function call
document.write(smallestNumber(N, S));
 
// This code is contributed by shikhasingrajput.
</script>


Output: 

10

 

Time Complexity: O(log210(N)) where N is the given integer.
Space Complexity: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 13 Apr, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials