# Significance of Pascal’s Identity

We know the Pascal’s Identity very well, i.e. **n _{c}_{r} = n-1_{c}_{r} + n-1_{c}_{r-1}**

A curious reader might have observed that Pascal’s Identity is instrumental in establishing recursive relation in solving binomial coefficients. It is quite easy to prove the above identity using simple algebra. Here I’m trying to explain it’s practical significance.

Recap from counting techniques, **n _{c}_{r} **means selecting

**elements from**

*r***elements. Let us pick a special element**

*n***from these**

*k***elements, we left with**

*n***(**elements.

*n – 1*)We can group these ** r** elements selection

**n**into two categories,

_{c}_{r}1) group that contains the element ** k**.

2) group that *does not* contain the element ** k**.

Consider first group, the special element ** k** is in all

**selections. Since**

*r***is part of**

*k***elements, we need to choose (**

*r***) elements from remaining (**

*r – 1***) elements, there are**

*n – 1***n-1**

_{c}_{r-1}ways.

Consider second group, the special element ** k** is not there in all

**selections, i.e. we will have to select all the**

*r***elements from available (**

*r***) elements (as we must exclude element**

*n – 1***from**

*k***). This can be done in**

*n***n-1**ways.

_{c}_{r}Now it is evident that sum of these two is selecting ** r** elements from

**elements.**

*n*There can be many ways to prove the above fact. There might be many applications of Pascal’s Identity. Please share your knowledge.

— **Venki**. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

## Recommended Posts:

- Cassini’s Identity
- Program for Identity Matrix
- Euler's Four Square Identity
- Brahmagupta Fibonacci Identity
- Proizvolov's Identity
- Find Kth smallest value for b such that a + b = a | b
- Number of pairs of lines having integer intersection points
- Percentage change in Hemisphere volume if radius is changed
- Program to find the time remaining for the day to complete
- Find two numbers with the given LCM and minimum possible difference
- Find an integer that is common in the maximum number of given arithmetic progressions
- How is the time complexity of Sieve of Eratosthenes is n*log(log(n))?
- Number of trailing zeros in N * (N - 2) * (N - 4)*....
- Height of Pyramid formed with given Rectangular Box