Odd numbers in N-th row of Pascal’s Triangle

Given N, the row number of Pascal’s triangle(row starting from 0). Find the count of odd numbers in N-th row of Pascal’s Triangle.

Prerequisite : Pascal’s Triangle | Count number of 1’s in binary representation of N

Examples :



Input : 11
Output : 8

Input : 20
Output : 4 

Approach : It appears the answer is always a power of 2. In fact, the following theorem exists :
THEOREM : The number of odd entries in row N of Pascal’s Triangle is 2 raised to the number of 1’s in the binary expansion of N.
Example: Since 83 = 64 + 16 + 2 + 1 has binary expansion (1010011), then row 83 has pow(2, 4) = 16 odd numbers.

Below is the implementation of above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

    
// CPP code to find the count of odd numbers
// in n-th row of Pascal's Triangle
#include <bits/stdc++.h>     
using namespace std ;
  
/* Function to get no of set
   bits in binary representation 
   of positive integer n */
int countSetBits(int n)
{
    unsigned int count = 0;
    while (n)
    {
        count += n & 1;
        n >>= 1;
    }
      
    return count;
}
  
int countOfOddsPascal(int n)
{
    // Count number of 1's in binary
    // representation of n.
    int c = countSetBits(n);
      
    // Number of odd numbers in n-th
    // row is 2 raised to power the count.
    return pow(2, c);
}
  
// Driver code
int main()
{
    int n = 20;    
    cout << countOfOddsPascal(n) ;    
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to find the count of odd
// numbers in n-th row of Pascal's 
// Triangle
import java.io.*;
  
class GFG {
      
    /* Function to get no of set
    bits in binary representation 
    of positive integer n */
    static int countSetBits(int n)
    {
        long count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
          
        return (int)count;
    }
      
    static int countOfOddsPascal(int n)
    {
          
        // Count number of 1's in binary
        // representation of n.
        int c = countSetBits(n);
          
        // Number of odd numbers in n-th
        // row is 2 raised to power the
        // count.
        return (int)Math.pow(2, c);
    }
      
    // Driver code
    public static void main (String[] args)
    {
        int n = 20
        System.out.println(
                     countOfOddsPascal(n));
    }
}
  
// This code is contributed by anuj_67.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code to find the count of
# odd numbers in n-th row of 
# Pascal's Triangle
  
# Function to get no of set
# bits in binary representation
# of positive integer n
def countSetBits(n):
    count =0
    while n:
        count += n & 1
        n >>= 1
          
    return count
  
def countOfOddPascal(n):
  
    # Count number of 1's in binary
    # representation of n.
    c = countSetBits(n)
  
    # Number of odd numbers in n-th
    # row is 2 raised to power the count.
    return pow(2, c)
  
# Driver Program
n = 20
print(countOfOddPascal(n))
  
# This code is contributed by Shrikant13

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to find the count of odd numbers
// in n-th row of Pascal's Triangle
using System;
  
class GFG {
      
    /* Function to get no of set
    bits in binary representation 
    of positive integer n */
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0)
        {
            count += n & 1;
            n >>= 1;
        }
          
        return count;
    }
      
    static int countOfOddsPascal(int n)
    {
        // Count number of 1's in binary
        // representation of n.
        int c = countSetBits(n);
          
        // Number of odd numbers in n-th
        // row is 2 raised to power the
        // count.
        return (int)Math.Pow(2, c);
    }
      
    // Driver code
    public static void Main () 
    {
        int n = 20; 
        Console.WriteLine(
                 countOfOddsPascal(n)) ; 
    }
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to find the 
// count of odd numbers
// in n-th row of Pascal's 
// Triangle
  
/* Function to get no of set
   bits in binary representation 
   of positive integer n */
function countSetBits($n)
{
    $count = 0;
    while ($n)
    {
        $count += $n & 1;
        $n >>= 1;
    }
      
    return $count;
}
  
function countOfOddsPascal($n)
{
      
    // Count number of 1's in binary
    // representation of n.
    $c = countSetBits($n);
      
    // Number of odd numbers in n-th
    // row is 2 raised to power the count.
    return pow(2, $c);
}
  
    // Driver code
    $n = 20; 
    echo countOfOddsPascal($n) ; 
  
// This code is contributed by mits. 
?>

chevron_right


Output:

4

Time Complexity : O(L), where L is the length of binary representation of given N.
Reference : https://www.math.hmc.edu/funfacts/ffiles/30001.4-5.shtml



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : shrikanth13, Mithun Kumar, vt_m



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.