Represent the given number as the sum of two composite numbers

Given an integer N, the task is to represent N as the sum of two composite integers. There can be multiple ways possible, print any one of them. If it is not possible to represent the number as the sum of two composite numbers then print -1.

Examples:

Input: N = 13
Output: 4 9
4 + 9 = 13 and both 4 and 9 are composite.



Input: N = 18
Output: 4 14

Approach: When N ≤ 11 then only 8 and 10 are the integers which can be represented as the sum of two composite integers i.e. 4 + 4 and 4 + 6 respectively.
When N > 11 then there are two cases:

  1. When N is even: N can be represented as 4 + (N – 4) since both are composite.
  2. When N is odd: N can be represented as 9 + (N – 9).

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find two composite
// numbers which when added
// give sum as n
void findNums(int n)
{
  
    // Only 8 and 10 can be represented
    // as the sum of two composite integers
    if (n <= 11) {
        if (n == 8)
            cout << "4 4";
        if (n == 10)
            cout << "4 6";
        else
            cout << "-1";
        return;
    }
  
    // If n is even
    if (n % 2 == 0)
        cout << "4 " << (n - 4);
  
    // If n is odd
    else
        cout << "9 " << (n - 9);
}
  
// Driver code
int main()
{
    int n = 13;
  
    findNums(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
      
// Function to find two composite
// numbers which when added
// give sum as n
static void findNums(int n)
{
  
    // Only 8 and 10 can be represented
    // as the sum of two composite integers
    if (n <= 11
    {
        if (n == 8)
            System.out.print("4 4");
        if (n == 10)
            System.out.print("4 6");
        else
            System.out.print("-1");
        return;
    }
  
    // If n is even
    if (n % 2 == 0)
        System.out.print("4 " + (n - 4));
  
    // If n is odd
    else
        System.out.print("9 " + (n - 9));
}
  
// Driver code
public static void main(String args[])
{
    int n = 13;
  
    findNums(n);
}
}
  
// This code is contributed by andrew1234

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to find two composite
# numbers which when added
# give sum as n
def findNums(n):
  
    # Only 8 and 10 can be represented
    # as the sum of two composite integers
    if (n <= 11):
        if (n == 8):
            print("4 4", end = " ")
        if (n == 10):
            print("4 6", end = " ")
        else:
            print("-1", end = " ")
  
    # If n is even
    if (n % 2 == 0):
        print("4 ", (n - 4), end = " ")
  
    # If n is odd
    else:
        print("9 ", n - 9, end = " ")
  
# Driver code
n = 13
  
findNums(n)
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
  
class GFG 
      
    // Function to find two composite 
    // numbers which when added 
    // give sum as n 
    static void findNums(int n) 
    
      
        // Only 8 and 10 can be represented 
        // as the sum of two composite integers 
        if (n <= 11) 
        
            if (n == 8) 
                Console.Write("4 4"); 
            if (n == 10) 
                Console.Write("4 6"); 
            else
                Console.Write("-1"); 
            return
        
      
        // If n is even 
        if (n % 2 == 0) 
            Console.Write("4 " + (n - 4)); 
      
        // If n is odd 
        else
            Console.Write("9 " + (n - 9)); 
    
      
    // Driver code 
    public static void Main() 
    
        int n = 13; 
      
        findNums(n); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Output:

9 4



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.