# Represent the fraction of two numbers in the string format

Given two integers representing the Numerator and Denominator of a fraction, return the fraction in string format. If the fractional part is repeating, enclose the repeating part in parentheses.

Examples:

```Input: Numerator = 1, Denominator = 2
Output: "0.5"
1/2 = 0.5 with no repeating part.

Input: Numerator = 50, Denominator = 22
Output: "2.(27)"
50/22 = 2.27272727... Since fractional part (27)
is repeating, it is enclosed in parentheses.
```

Prerequisites :Recurring Sequence in a Fraction

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach :The idea is to first calculate the integral quotient (absolute part before decimal point) and then calculate the fractional part. To check if the fractional part is repeating, insert the remainder (numerator % denominator) in a map with key as remainder and value as the index position at which this remainder occurs. If at any point of time, the remainder becomes zero, then there doesn’t exist a repeating fraction otherwise if the remainder is already found in the map, then there exists a repeating fraction.

Below is the implementation of above approach.

## C++

 `// C++ program to calculate  ` `// fraction of two numbers ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the required fraction ` `// in string format ` `string calculateFraction(``int` `num, ``int` `den) ` `{ ` `    ``// If the numerator is zero, answer is 0 ` `    ``if` `(num == 0) ` `        ``return` `"0"``; ` ` `  `    ``// If any one (out of numerator and denominator) ` `    ``// is -ve, sign of resultant answer -ve. ` `    ``int` `sign = (num < 0) ^ (den < 0) ? -1 : 1; ` ` `  `    ``num = ``abs``(num); ` `    ``den = ``abs``(den); ` ` `  `    ``// Calculate the absolute part (before decimal point). ` `    ``int` `initial = num / den; ` ` `  `    ``// Output string to store the answer ` `    ``string res; ` ` `  `    ``// Append sign ` `    ``if` `(sign == -1) ` `        ``res += ``"-"``; ` ` `  `    ``// Append the initial part ` `    ``res += to_string(initial); ` ` `  `    ``// If completely divisible, return answer. ` `    ``if` `(num % den == 0) ` `        ``return` `res; ` ` `  `    ``res += ``"."``; ` ` `  `    ``// Initialize Remainder ` `    ``int` `rem = num % den;  ` `    ``map<``int``, ``int``> mp; ` ` `  `    ``// Position at which fraction starts repeating ` `    ``// if it exists ` `    ``int` `index; ` `    ``bool` `repeating = ``false``; ` `    ``while` `(rem > 0 && !repeating) { ` ` `  `        ``// If this remainder is already seen, ` `        ``// then there exists a repeating fraction. ` `        ``if` `(mp.find(rem) != mp.end()) { ` ` `  `            ``// Index to insert parentheses ` `            ``index = mp[rem]; ` `            ``repeating = ``true``; ` `            ``break``; ` `        ``} ` `        ``else` `            ``mp[rem] = res.size(); ` ` `  `        ``rem = rem * 10; ` ` `  `        ``// Calculate quotient, append it to result and ` `        ``// calculate next remainder ` `        ``int` `temp = rem / den; ` `        ``res += to_string(temp); ` `        ``rem = rem % den; ` `    ``} ` ` `  `    ``// If repeating fraction exists, insert parentheses. ` `    ``if` `(repeating) { ` `        ``res += ``")"``; ` `        ``res.insert(index, ``"("``); ` `    ``} ` ` `  `    ``// Return result. ` `    ``return` `res; ` `} ` ` `  `// Drivers Code ` `int` `main() ` `{ ` `    ``int` `num = 50, den = 22; ` `    ``cout << calculateFraction(num, den) << endl; ` ` `  `    ``num = -1, den = 2; ` `    ``cout << calculateFraction(num, den) << endl; ` `    ``return` `0; ` `} `

## Python3

 `# Python3 program to calculate fraction  ` `# of two numbers ` ` `  `# Function to return the required  ` `# fraction in string format  ` `def` `calculateFraction(num, den) : ` ` `  `    ``# If the numerator is zero, answer is 0  ` `    ``if` `(num ``=``=` `0``):  ` `        ``return` `"0"` ` `  `    ``# If any one (out of numerator and denominator)  ` `    ``# is -ve, sign of resultant answer -ve.  ` `    ``sign ``=` `-``1` `if` `(num < ``0``) ^ (den < ``0``) ``else` `1` ` `  `    ``num ``=` `abs``(num)  ` `    ``den ``=` `abs``(den)  ` ` `  `    ``# Calculate the absolute part  ` `    ``# (before decimal point).  ` `    ``initial ``=` `num ``/``/` `den  ` ` `  `    ``# Output string to store the answer  ` `    ``res ``=` `""  ` ` `  `    ``# Append sign  ` `    ``if` `(sign ``=``=` `-``1``):  ` `        ``res ``+``=` `"-"` ` `  `    ``# Append the initial part  ` `    ``res ``+``=` `str``(initial)  ` ` `  `    ``# If completely divisible, return answer.  ` `    ``if` `(num ``%` `den ``=``=` `0``):  ` `        ``return` `res  ` ` `  `    ``res ``+``=` `"."` ` `  `    ``# Initialize Remainder  ` `    ``rem ``=` `num ``%` `den  ` `    ``mp ``=` `{}  ` ` `  `    ``# Position at which fraction starts ` `    ``# repeating if it exists  ` `    ``index ``=` `0` `    ``repeating ``=` `False` `    ``while` `(rem > ``0` `and` `not` `repeating) : ` ` `  `        ``# If this remainder is already seen,  ` `        ``# then there exists a repeating fraction.  ` `        ``if` `( rem ``in` `mp):  ` ` `  `            ``# Index to insert parentheses  ` `            ``index ``=` `mp[rem]  ` `            ``repeating ``=` `True` `            ``break` `         `  `        ``else``: ` `            ``mp[rem] ``=` `len``(res)  ` ` `  `        ``rem ``=` `rem ``*` `10` ` `  `        ``# Calculate quotient, append it to result  ` `        ``# and calculate next remainder  ` `        ``temp ``=` `rem ``/``/` `den  ` `        ``res ``+``=` `str``(temp ) ` `        ``rem ``=` `rem ``%` `den  ` `     `  `    ``# If repeating fraction exists,  ` `    ``# insert parentheses.  ` `    ``if` `(repeating) :  ` `        ``res ``+``=` `")"` `        ``x ``=` `res[:index] ` `        ``x ``+``=` `"("` `        ``x ``+``=` `res[index:] ` `        ``res ``=` `x ` `     `  `    ``# Return result.  ` `    ``return` `res  ` ` `  `# Driver code  ` `if` `__name__ ``=``=``"__main__"``: ` `    ``num ``=` `50` `    ``den ``=` `22` `    ``print``(calculateFraction(num, den)) ` `    ``num ``=` `-``1` `    ``den ``=` `2` `    ``print``(calculateFraction(num, den))  ` ` `  `# This code is contributed ` `# Shubham Singh(SHUBHAMSINGH10) `

Output:

```2.(27)
-0.5
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

4

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.