Skip to content
Related Articles

Related Articles

Improve Article

Rearrange Array to find K using Binary Search algorithm without sorting

  • Last Updated : 18 Aug, 2021

Given an array, arr[] of N distinct integers and an integer K, the task is to rearrange the given array in such a way, that K can be found with the help of Binary Search Algorigthm in the rearranged array. Please note, the array is not to be sorted.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {10, 7, 2, 5, 3, 8}, K = 7
Output: 3 7 8 5 2 10  
Explanation: Finding K in output array {3, 7, 8, 5, 2, 10} using Binary Search 
— initially, left (L) = 0, right (R) = 5, mid = 2, i.e. 8 (not equal to K) 
— since 8 > K, therefore left (L) = 0, right (R) = 1, mid = 0, i.e.  3(not equal to K) 
— since 3 < K, therefore left (L) = 1, right (R) = 1, mid = 1, i.e. 7 (which is equal to K) 
Hence K can be found in output array using Binary Search, even the array is unsorted. 
 



Input: arr[] = {10, 7, 2, 5, 8, 6}, K = 6
Output: 8 7 5 10 2 6 

 

Approach: The given problem can be solved based on the following observations: 

  1. An integer K can be found in a sorted array arr[] using the binary search algorithm as follows:
    1. Initially, L = 0 and R = N-1.
    2. While L is less than or equal to R:
      1. Find the mid point of the current range [L, R] as mid = (L+R)/2.
      2. If arr[mid] is equal to K, it returns true.
      3. Else, if arr[mid] is greater than K, then update R to mid-1 i.e, all elements right of mid are skipped.
      4. Else, if arr[mid] is less than K, then update L to mid+1 i.e, all elements left of mid are skipped.
    3. If K is not found, then return false.
  2. The binary search algorithm may fail on unsorted arrays because the array doesn’t meet the criteria of the array being monotonically increasing or decreasing. But, sometimes the binary search algorithm may also work on unsorted arrays.
  3. For example, suppose the given array, arr[] is equal to {2, 1, 5, 4, 3} and K is equal to 2. Then the algorithm works as:
    1. In the first iteration:
      • The L=0 and R= 4, therefore mid = (4+0)/2 =2. 
      • The arr[2] (=5) is greater than 2,  so assign mid-1 to R. Now R becomes 1.
    2. In the second Iteration:
      • The L=0 and R= 1, therefore mid = (1+0)/2 =0.
      • The arr[0] (=2) is equal to 2. Therefore, return true.
  4. Therefore, from above, it can be observed that, to go the index X, from a position mid, there are two cases:
    1. If mid is less than X, then arr[mid] has to be less than arr[X], to move towards index X, which lies on the right side of mid.
    2. Else, if mid is greater than X then arr[mid] has to be greater than arr[X], to move towards index X, which lies on the left side of mid

Follow the steps below to solve the problem:

  • Initialize an array, say ans[] with all array elements as -1 to store the rearranged array.
  • Also, initialize two vectors say smaller and greater to store the elements smaller and greater than K.
  • Traverse the array, arr[] and push the current element into smaller if it is less than K. Otherwise, push it into greater if it is greater than K.
  • Find the index of the element K in the array arr[] and then assign the value of it to K.
  • Initialize two variables, say low as 0 and high as N-1, to perform a binary search.
  • Iterate until low is less than or equal to high and perform the following steps:
    • Find the mid of the current range [low, high] and store it in a variable, say mid.
    • If mid is less than K, then do the following:
    • If mid is greater than K, then do the following:
    • If mid is equal to K, then assign arr[K] to ans[mid] and then break.
  • After completing the above steps, traverse the array, ans[] and if the current element is “-1” i.e not filled, then assign any unused element to it.
  • Finally, print the array ans[] as the rearranged array.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to rearrange the array
void Rearrange(int arr[], int K, int N)
{
    // Stores the rearranged array
    int ans[N + 1];
 
    // Stores whether the arrangement
    // is possible or not
    int f = -1;
 
    for (int i = 0; i < N; i++) {
        ans[i] = -1;
    }
 
    // Update K with the position of K
    K = find(arr, arr + N, K) - arr;
    
    // Stores all elements lesser than
    // and greater than in vector smaller
    // and greater respectively
    vector<int> smaller, greater;
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
 
        // If arr[i] is less than arr[K]
        if (arr[i] < arr[K])
            smaller.push_back(arr[i]);
 
        // Else
        else if (arr[i] > arr[K])
            greater.push_back(arr[i]);
    }
 
    int low = 0, high = N - 1;
 
    // Iterate unil low is less than or
    // equal to high
    while (low <= high) {
 
        // Stores mid point
        int mid = (low + high) / 2;
 
        // If mid is equal to K
        if (mid == K) {
            ans[mid] = arr[K];
            f = 1;
            break;
        }
 
        // If mid is less than K
        else if (mid < K) {
            if (smaller.size() == 0) {
                break;
            }
            ans[mid] = smaller.back();
            smaller.pop_back();
            low = mid + 1;
        }
        // If mid is greater than K
        else {
            if (greater.size() == 0) {
                break;
            }
            ans[mid] = greater.back();
            greater.pop_back();
            high = mid - 1;
        }
    }
 
    // If f is -1
    if (f == -1) {
        cout << -1 << endl;
        return;
    }
 
    // Iterate in the range [1, N]
    for (int i = 0; i < N; i++) {
 
        // If ans[i] is equal to -1
        if (ans[i] == -1) {
 
            if (smaller.size()) {
                ans[i] = smaller.back();
                smaller.pop_back();
            }
            else if (greater.size()) {
                ans[i] = greater.back();
                greater.pop_back();
            }
        }
    }
 
    // Print the rearranged array
    for (int i = 0; i < N; i++)
        cout << ans[i] << " ";
    cout << endl;
}
 
// Driver Code
int main()
{
    // Input
    int arr[] = { 10, 7, 2, 5, 3, 8 };
    int K = 7;
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    Rearrange(arr, K, N);
 
    return 0;
}

Java




// Java program for the above approach
  
import java.util.*;
public class GFG
{
   
// Function to rearrange the array
static void Rearrange(int arr[], int K, int N)
{
   
    // Stores the rearranged array
    int ans[] = new int[N + 1];
 
    // Stores whether the arrangement
    // is possible or not
    int f = -1;
 
    for (int i = 0; i < N; i++) {
        ans[i] = -1;
    }
 
    // Update K with the position of K
   for (int i = 0; i < arr.length; i++)
   {
       if (arr[i] == K)
       {
           K = i;
           break;
       }
   }
    
    // Stores all elements lesser than
    // and greater than in vector smaller
    // and greater respectively
     Vector<Integer> smaller = new Vector<Integer>();
     Vector<Integer> greater = new Vector<Integer>();
      
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
 
        // If arr[i] is less than arr[K]
        if (arr[i] < arr[K])
            smaller.add(arr[i]);
 
        // Else
        else if (arr[i] > arr[K])
            greater.add(arr[i]);
    }
 
    int low = 0, high = N - 1;
 
    // Iterate unil low is less than or
    // equal to high
    while (low <= high) {
 
        // Stores mid point
        int mid = (low + high) / 2;
 
        // If mid is equal to K
        if (mid == K) {
            ans[mid] = arr[K];
            f = 1;
            break;
        }
 
        // If mid is less than K
        else if (mid < K) {
            if (smaller.size() == 0) {
                break;
            }
            ans[mid] = smaller.lastElement();
            smaller.remove(smaller.size()-1);
            low = mid + 1;
        }
       
        // If mid is greater than K
        else {
            if (greater.size() == 0) {
                break;
            }
            ans[mid] = greater.lastElement();
            greater.remove(greater.size()-1);
            high = mid - 1;
        }
    }
 
    // If f is -1
    if (f == -1) {
        System.out.println(-1 );
        return;
    }
 
    // Iterate in the range [1, N]
    for (int i = 0; i < N; i++) {
 
        // If ans[i] is equal to -1
        if (ans[i] == -1) {
 
            if (smaller.size()>0) {
                ans[i] = smaller.lastElement();
                smaller.remove(smaller.size()-1);
            }
            else if (greater.size()>0) {
                ans[i] = greater.lastElement();
                greater.remove(greater.size()-1);
            }
        }
    }
 
    // Print the rearranged array
    for (int i = 0; i < N; i++)
        System.out.print(ans[i] +" ");
    System.out.println();
}
   
  // Driver code
    public static void main(String args[])
    {
       
      // Input
    int arr[] = { 10, 7, 2, 5, 3, 8 };
    int K = 7;
    int N = arr.length;
 
    // Function Call
    Rearrange(arr, K, N);
    }
}
 
// This code is contributed by SoumikMondal

Python3




# Python 3 program for the above approach
 
 
# Function to rearrange the array
def Rearrange(arr, K,  N):
 
    # Stores the rearranged array
    ans = [0]*(N + 1)
 
    # Stores whether the arrangement
    # is possible or not
    f = -1
 
    for i in range(N):
        ans[i] = -1
 
    # Update K with the position of K
    K = arr.index(K)
 
    # Stores all elements lesser than
    # and greater than in vector smaller
    # and greater respectively
    smaller = []
    greater = []
 
    # Traverse the array arr[]
    for i in range(N):
 
        # If arr[i] is less than arr[K]
        if (arr[i] < arr[K]):
            smaller.append(arr[i])
 
        # Else
        elif (arr[i] > arr[K]):
            greater.append(arr[i])
 
    low = 0
    high = N - 1
 
    # Iterate unil low is less than or
    # equal to high
    while (low <= high):
 
        # Stores mid point
        mid = (low + high) // 2
 
        # If mid is equal to K
        if (mid == K):
            ans[mid] = arr[K]
            f = 1
            break
 
        # If mid is less than K
        elif (mid < K):
            if (len(smaller) == 0):
                break
 
            ans[mid] = smaller[-1]
            smaller.pop()
            low = mid + 1
 
        # If mid is greater than K
        else:
            if (len(greater) == 0):
                break
 
            ans[mid] = greater[-1]
            greater.pop()
            high = mid - 1
 
    # If f is -1
    if (f == -1):
        print(-1)
        return
 
    # Iterate in the range [1, N]
    for i in range(N):
 
        # If ans[i] is equal to -1
        if (ans[i] == -1):
 
            if (len(smaller)):
                ans[i] = smaller[-1]
                smaller.pop()
 
            elif (len(greater)):
                ans[i] = greater[-1]
                greater.pop()
 
    # Print the rearranged array
    for i in range(N):
        print(ans[i], end=" ")
    print()
 
 
# Driver Code
if __name__ == "__main__":
 
    # Input
    arr = [10, 7, 2, 5, 3, 8]
    K = 7
    N = len(arr)
 
    # Function Call
    Rearrange(arr, K, N)
 
    # This code is contributed by ukasp.

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function to rearrange the array
  static void Rearrange(int []arr, int K, int N)
  {
 
    // Stores the rearranged array
    int []ans = new int[N + 1];
 
    // Stores whether the arrangement
    // is possible or not
    int f = -1;
 
    for (int i = 0; i < N; i++) {
      ans[i] = -1;
    }
 
    // Update K with the position of K
    for (int i = 0; i < arr.Length; i++)
    {
      if (arr[i] == K)
      {
        K = i;
        break;
      }
    }
 
    // Stores all elements lesser than
    // and greater than in vector smaller
    // and greater respectively
    List<int> smaller = new List<int>();
    List<int> greater = new List<int>();
 
    // Traverse the array []arr
    for (int i = 0; i < N; i++) {
 
      // If arr[i] is less than arr[K]
      if (arr[i] < arr[K])
        smaller.Add(arr[i]);
 
      // Else
      else if (arr[i] > arr[K])
        greater.Add(arr[i]);
    }
 
    int low = 0, high = N - 1;
 
    // Iterate unil low is less than or
    // equal to high
    while (low <= high) {
 
      // Stores mid point
      int mid = (low + high) / 2;
 
      // If mid is equal to K
      if (mid == K) {
        ans[mid] = arr[K];
        f = 1;
        break;
      }
 
      // If mid is less than K
      else if (mid < K) {
        if (smaller.Count == 0) {
          break;
        }
        ans[mid] = smaller[smaller.Count-1];
        smaller.RemoveAt(smaller.Count-1);
        low = mid + 1;
      }
 
      // If mid is greater than K
      else {
        if (greater.Count == 0) {
          break;
        }
        ans[mid] = greater[greater.Count-1];
        greater.RemoveAt(greater.Count-1);
        high = mid - 1;
      }
    }
 
    // If f is -1
    if (f == -1) {
      Console.WriteLine(-1 );
      return;
    }
 
    // Iterate in the range [1, N]
    for (int i = 0; i < N; i++) {
 
      // If ans[i] is equal to -1
      if (ans[i] == -1) {
 
        if (smaller.Count>0) {
          ans[i] = smaller[smaller.Count-1];
          smaller.RemoveAt(smaller.Count-1);
        }
        else if (greater.Count>0) {
          ans[i] = greater[greater.Count-1];
          greater.RemoveAt(greater.Count-1);
        }
      }
    }
 
    // Print the rearranged array
    for (int i = 0; i < N; i++)
      Console.Write(ans[i] +" ");
    Console.WriteLine();
  }
 
  // Driver code
  public static void Main(String []args)
  {
 
    // Input
    int []arr = { 10, 7, 2, 5, 3, 8 };
    int K = 7;
    int N = arr.Length;
 
    // Function Call
    Rearrange(arr, K, N);
  }
}
 
 
// This code is contributed by Princi Singh

Javascript




<script>
        // JavaScript program for the above approach
 
        // Function to rearrange the array
        function Rearrange(arr, K, N)
        {
         
            // Stores the rearranged array
            let ans = new Array(N + 1);
 
            // Stores whether the arrangement
            // is possible or not
            let f = -1;
 
            for (let i = 0; i < N; i++) {
                ans[i] = -1;
            }
 
            // Update K with the position of K
            for (let i = 0; i < arr.length; i++) {
                if (arr[i] == K) {
                    K = i;
                    break;
                }
            }
             
            // Stores all elements lesser than
            // and greater than in vector smaller
            // and greater respectively
            let smaller = [];
            let greater = [];
 
            // Traverse the array arr[]
            for (let i = 0; i < N; i++) {
 
                // If arr[i] is less than arr[K]
                if (arr[i] < arr[K])
                    smaller.push(arr[i]);
 
                // Else
                else if (arr[i] > arr[K])
                    greater.push(arr[i]);
            }
 
            let low = 0, high = N - 1;
 
            // Iterate unil low is less than or
            // equal to high
            while (low <= high) {
 
                // Stores mid point
                let mid = Math.floor((low + high) / 2);
 
                // If mid is equal to K
                if (mid == K) {
                    ans[mid] = arr[K];
                    f = 1;
                    break;
                }
 
                // If mid is less than K
                else if (mid < K) {
                    if (smaller.length == 0) {
                        break;
                    }
                    ans[mid] = smaller[smaller.length - 1];
                    smaller.pop();
                    low = mid + 1;
                }
                // If mid is greater than K
                else {
                    if (greater.length == 0) {
                        break;
                    }
                    ans[mid] = greater[greater.length - 1];
                    greater.pop();
                    high = mid - 1;
                }
            }
 
            // If f is -1
            if (f == -1) {
                document.write(-1);
                return;
            }
 
            // Iterate in the range [1, N]
            for (let i = 0; i < N; i++) {
 
                // If ans[i] is equal to -1
                if (ans[i] == -1) {
 
                    if (smaller.length != 0) {
                        ans[i] = smaller[smaller.length - 1];
                        smaller.pop();
                    }
                    else if (greater.length != 0) {
                        ans[i] = greater[greater.length - 1];
                        greater.pop;
                    }
                }
            }
 
            // Print the rearranged array
            for (let i = 0; i < N; i++)
                document.write(ans[i] + " ");
            document.write("<br>")
        }
 
        // Driver Code
 
        // Input
        let arr = [10, 7, 2, 5, 3, 8];
        let K = 7;
        let N = arr.length;
 
        // Function Call
        Rearrange(arr, K, N);
 
// This code is contributed by Potta Lokesh
    </script>
Output
3 7 8 5 2 10 

Time Complexity: O(N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :