Queries for counts of multiples in an array
Given an array of positive integers and many queries for divisibility. In every query, we are given an integer k ( > 0), we need to count all elements in the array which are perfectly divisible by ‘k’.
Example:
Input: 2 4 9 15 21 20 k = 2 k = 3 k = 5 Output: 3 3 2 Explanation: Multiples of '2' in array are:- {2, 4, 20} Multiples of '3' in array are:- {9, 15, 21} Multiples of '5' in array are:- {15, 20}
Simple Approach is to traverse over every value of ‘k’ in whole array and count total multiples by checking modulus of every element of array i.e., for every element of i (0 < i < n), check whether arr[i] % k == 0 or not. If it’s perfectly divisible of k, then increment count. Time complexity of this approach is O(n * k) which is not efficient for large number of queries of k.
Efficient approach is to use the concept of Sieve of Eratosthenes. Let’s define the maximum value in array[] is ‘Max’. Since multiples of all numbers in array[] will always be less than Max, therefore we will iterate up-to ‘Max’ only.
Now for every value(say ‘q’) iterate q, 2q, 3q, … t.k(tk <= MAX) because all these numbers are multiples of ‘q‘ .Meanwhile store the count of all these number for every value of q(1, 2, … MAX) in ans[] array. After that we can answer every query in O(1) time.
Implementation:
C++
// C++ program to calculate all multiples // of integer 'k' in array[] #include <bits/stdc++.h> using namespace std; // ans is global pointer so that both countSieve() // and countMultiples() can access it. int * ans = NULL; // Function to pre-calculate all multiples of // array elements void countSieve( int arr[], int n) { int MAX = *max_element(arr, arr + n); int cnt[MAX + 1]; // ans is global pointer so that query function // can access it. ans = new int [MAX + 1]; // Initialize both arrays as 0. memset (cnt, 0, sizeof (cnt)); memset (ans, 0, (MAX + 1) * sizeof ( int )); // Store the arr[] elements as index // in cnt[] array for ( int i = 0; i < n; ++i) ++cnt[arr[i]]; // Iterate over all multiples as 'i' // and keep the count of array[] ( In // cnt[] array) elements in ans[] array for ( int i = 1; i <= MAX; ++i) for ( int j = i; j <= MAX; j += i) ans[i] += cnt[j]; return ; } int countMultiples( int k) { // return pre-calculated result return ans[k]; } // Driver code int main() { int arr[] = { 2, 4, 9, 15, 21, 20 }; int n = sizeof (arr) / sizeof (arr[0]); // pre-calculate all multiples countSieve(arr, n); int k = 2; cout << countMultiples(k) << "\n" ; k = 3; cout << countMultiples(k) << "\n" ; k = 5; cout << countMultiples(k) << "\n" ; return 0; } |
Java
// Java program to calculate all multiples // of integer 'k' in array[] class CountMultiples { // ans is global array so that both // countSieve() and countMultiples() // can access it. static int ans[]; // Function to pre-calculate all // multiples of array elements static void countSieve( int arr[], int n) { int MAX = arr[ 0 ]; for ( int i = 1 ; i < n; i++) MAX = Math.max(arr[i], MAX); int cnt[] = new int [MAX + 1 ]; // ans is global array so that // query function can access it. ans = new int [MAX + 1 ]; // Store the arr[] elements as // index in cnt[] array for ( int i = 0 ; i < n; ++i) ++cnt[arr[i]]; // Iterate over all multiples as 'i' // and keep the count of array[] // (In cnt[] array) elements in ans[] // array for ( int i = 1 ; i <= MAX; ++i) for ( int j = i; j <= MAX; j += i) ans[i] += cnt[j]; return ; } static int countMultiples( int k) { // return pre-calculated result return ans[k]; } // Driver code public static void main(String args[]) { int arr[] = { 2 , 4 , 9 , 15 , 21 , 20 }; int n = 6 ; // pre-calculate all multiples countSieve(arr, n); int k = 2 ; System.out.println(countMultiples(k)); k = 3 ; System.out.println(countMultiples(k)); k = 5 ; System.out.println(countMultiples(k)); } } /*This code is contributed by Danish Kaleem */ |
Python3
# Python3 program to calculate all multiples # of integer 'k' in array[] # ans is global array so that both countSieve() # and countMultiples() can access it. ans = [] # Function to pre-calculate all multiples # of array elements # Here, the arguments are as follows # a: given array # n: length of given array def countSieve(arr, n): MAX = max (arr) # Accessing the global array in the function global ans # Initializing "ans" array with zeros ans = [ 0 ] * ( MAX + 1 ) # Initializing "cnt" array with zeros cnt = [ 0 ] * ( MAX + 1 ) #Store the arr[] elements as index in cnt[] array for i in range (n): cnt[arr[i]] + = 1 # Iterate over all multiples as 'i' # and keep the count of array[] ( In # cnt[] array) elements in ans[] array for i in range ( 1 , MAX + 1 ): for j in range (i, MAX + 1 , i): ans[i] + = cnt[j] def countMultiples(k): # Return pre-calculated result return (ans[k]) # Driver code if __name__ = = "__main__" : arr = [ 2 , 4 , 9 , 15 , 21 , 20 ] n = len (arr) # Pre-calculate all multiples countSieve(arr, n) k = 2 print (countMultiples( 2 )) k = 3 print (countMultiples( 3 )) k = 5 print (countMultiples( 5 )) # This code is contributed by Pratik Somwanshi |
C#
// C# program to calculate all multiples // of integer 'k' in array[] using System; class GFG { // ans is global array so that both // countSieve() and countMultiples() // can access it. static int [] ans; // Function to pre-calculate all // multiples of array elements static void countSieve( int [] arr, int n) { int MAX = arr[0]; for ( int i = 1; i < n; i++) MAX = Math.Max(arr[i], MAX); int [] cnt = new int [MAX + 1]; // ans is global array so that // query function can access it. ans = new int [MAX + 1]; // Store the arr[] elements as // index in cnt[] array for ( int i = 0; i < n; ++i) ++cnt[arr[i]]; // Iterate over all multiples as // 'i' and keep the count of // array[] (In cnt[] array) // elements in ans[] array for ( int i = 1; i <= MAX; ++i) for ( int j = i; j <= MAX; j += i) ans[i] += cnt[j]; return ; } static int countMultiples( int k) { // return pre-calculated result return ans[k]; } // Driver code public static void Main() { int [] arr = { 2, 4, 9, 15, 21, 20 }; int n = 6; // pre-calculate all multiples countSieve(arr, n); int k = 2; Console.WriteLine(countMultiples(k)); k = 3; Console.WriteLine(countMultiples(k)); k = 5; Console.WriteLine(countMultiples(k)); } } // This code is contributed by nitin mittal |
PHP
<?php // PHP program to calculate // all multiples of integer // 'k' in array[] // ans is global array so // that both countSieve() // and countMultiples() // can access it. $ans ; // Function to pre-calculate all // multiples of array elements function countSieve( $arr , $n ) { global $ans ; $MAX = $arr [0]; for ( $i = 1; $i < $n ; $i ++) $MAX = max( $arr [ $i ], $MAX ); $cnt = array_fill (0, $MAX + 1, 0); // ans is global array so that // query function can access it. $ans = array_fill (0, $MAX + 1, 0); // Store the arr[] elements // as index in cnt[] array for ( $i = 0; $i < $n ; ++ $i ) ++ $cnt [ $arr [ $i ]]; // Iterate over all multiples as 'i' // and keep the count of array[] // (In cnt[] array) elements in ans[] // array for ( $i = 1; $i <= $MAX ; ++ $i ) for ( $j = $i ; $j <= $MAX ; $j += $i ) $ans [ $i ] += $cnt [ $j ]; return ; } function countMultiples( $k ) { global $ans ; // return pre-calculated result return $ans [ $k ]; } // Driver code $arr = array ( 2, 4, 9, 15, 21, 20); $n = 6; // pre-calculate // all multiples countSieve( $arr , $n ); $k = 2; echo countMultiples( $k ) . "\n" ; $k = 3; echo countMultiples( $k ) . "\n" ; $k = 5; echo countMultiples( $k ) . "\n" ; // This code is contributed by mits ?> |
Javascript
<script> // Javascript program to calculate all multiples // of integer 'k' in array[] // ans is global array so that both // countSieve() and countMultiples() // can access it. let ans = []; // Function to pre-calculate all // multiples of array elements function countSieve(arr, n) { let MAX = arr[0]; for (let i = 1; i < n; i++) MAX = Math.max(arr[i], MAX); let cnt = Array.from({length: MAX + 1}, (_, i) => 0); // ans is global array so that // query function can access it. ans = Array.from({length: MAX + 1}, (_, i) => 0); // Store the arr[] elements as // index in cnt[] array for (let i = 0; i < n; ++i) ++cnt[arr[i]]; // Iterate over all multiples as 'i' // and keep the count of array[] // (In cnt[] array) elements in ans[] // array for (let i = 1; i <= MAX; ++i) for (let j = i; j <= MAX; j += i) ans[i] += cnt[j]; return ; } function countMultiples(k) { // return pre-calculated result return ans[k]; } // driver function let arr = [ 2, 4, 9, 15, 21, 20 ]; let n = 6; // pre-calculate all multiples countSieve(arr, n); let k = 2; document.write(countMultiples(k) + "<br/>" ); k = 3; document.write(countMultiples(k) + "<br/>" ); k = 5; document.write(countMultiples(k) + "<br/>" ); </script> |
3 3 2
Time complexity: O(M*log(M)) where M is the maximum value in array elements.
Auxiliary space: O(MAX)
This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeksorg. See your article appearing on the GeeksforGeeks main page and help other Geeks
Please Login to comment...