# Find numbers which are multiples of first array and factors of second array

• Last Updated : 11 Jun, 2021

Given two arrays A[] and B[], the task is to find the integers which are divisible by all the elements of array A[] and divide all the elements of array B[].

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: A[] = {1, 2, 2, 4}, B[] = {16, 32, 64}
Output: 4 8 16
4, 8 and 16 are the only numbers that
are multiples of all the elements of array A[]
and divide all the elements of array B[]

Input: A[] = {2, 3, 6}, B[] = {42, 84}
Output: 6 42

Approach: If X is a multiple of all the elements of the first array then X must be a multiple of the LCM of all the elements of the first array.
Similarly, If X is a factor of all the elements of the second array then it must be a factor of the GCD of all the elements of the second array and such X will exist only if GCD of the second array is divisible by the LCM of the first array.
If it is divisible then X can be any value from the range [LCM, GCD] which is a multiple of LCM and evenly divides GCD.

Below is the implementation of above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the LCM of two numbers``int` `lcm(``int` `x, ``int` `y)``{``    ``int` `temp = (x * y) / __gcd(x, y);``    ``return` `temp;``}` `// Function to print the required numbers``void` `findNumbers(``int` `a[], ``int` `n, ``int` `b[], ``int` `m)``{` `    ``// To store the lcm of array a[] elements``    ``// and the gcd of array b[] elements``    ``int` `lcmA = 1, gcdB = 0;` `    ``// Finding LCM of first array``    ``for` `(``int` `i = 0; i < n; i++)``        ``lcmA = lcm(lcmA, a[i]);` `    ``// Finding GCD of second array``    ``for` `(``int` `i = 0; i < m; i++)``        ``gcdB = __gcd(gcdB, b[i]);` `    ``// No such element exists``    ``if` `(gcdB % lcmA != 0) {``        ``cout << ``"-1"``;``        ``return``;``    ``}` `    ``// All the multiples of lcmA which are``    ``// less than or equal to gcdB and evenly``    ``// divide gcdB will satisfy the conditions``    ``int` `num = lcmA;``    ``while` `(num <= gcdB) {``        ``if` `(gcdB % num == 0)``            ``cout << num << ``" "``;``        ``num += lcmA;``    ``}``}` `// Driver code``int` `main()``{` `    ``int` `a[] = { 1, 2, 2, 4 };``    ``int` `b[] = { 16, 32, 64 };` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a[0]);``    ``int` `m = ``sizeof``(b) / ``sizeof``(b[0]);` `    ``findNumbers(a, n, b, m);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{``static` `int` `__gcd(``int` `a, ``int` `b)``{``    ``if` `(b == ``0``)``        ``return` `a;``    ``return` `__gcd(b, a % b);``    ` `}` `// Function to return the LCM of two numbers``static` `int` `lcm(``int` `x, ``int` `y)``{``    ``int` `temp = (x * y) / __gcd(x, y);``    ``return` `temp;``}` `// Function to print the required numbers``static` `void` `findNumbers(``int` `a[], ``int` `n,``                        ``int` `b[], ``int` `m)``{` `    ``// To store the lcm of array a[] elements``    ``// and the gcd of array b[] elements``    ``int` `lcmA = ``1``, gcdB = ``0``;` `    ``// Finding LCM of first array``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``lcmA = lcm(lcmA, a[i]);` `    ``// Finding GCD of second array``    ``for` `(``int` `i = ``0``; i < m; i++)``        ``gcdB = __gcd(gcdB, b[i]);` `    ``// No such element exists``    ``if` `(gcdB % lcmA != ``0``)``    ``{``        ``System.out.print(``"-1"``);``        ``return``;``    ``}` `    ``// All the multiples of lcmA which are``    ``// less than or equal to gcdB and evenly``    ``// divide gcdB will satisfy the conditions``    ``int` `num = lcmA;``    ``while` `(num <= gcdB)``    ``{``        ``if` `(gcdB % num == ``0``)``            ``System.out.print(num + ``" "``);``        ``num += lcmA;``    ``}``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `a[] = { ``1``, ``2``, ``2``, ``4` `};``    ``int` `b[] = { ``16``, ``32``, ``64` `};` `    ``int` `n = a.length;``    ``int` `m = b.length;` `    ``findNumbers(a, n, b, m);``}``}` `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 implementation of the approach``from` `math ``import` `gcd` `# Function to return the LCM of two numbers``def` `lcm( x, y) :``    ` `    ``temp ``=` `(x ``*` `y) ``/``/` `gcd(x, y);``    ``return` `temp;` `# Function to print the required numbers``def` `findNumbers(a, n, b, m) :` `    ``# To store the lcm of array a[] elements``    ``# and the gcd of array b[] elements``    ``lcmA ``=` `1``; __gcdB ``=` `0``;` `    ``# Finding LCM of first array``    ``for` `i ``in` `range``(n) :``        ``lcmA ``=` `lcm(lcmA, a[i]);` `    ``# Finding GCD of second array``    ``for` `i ``in` `range``(m) :``        ``__gcdB ``=` `gcd(__gcdB, b[i]);` `    ``# No such element exists``    ``if` `(__gcdB ``%` `lcmA !``=` `0``) :``        ``print``(``"-1"``);``        ``return``;` `    ``# All the multiples of lcmA which are``    ``# less than or equal to gcdB and evenly``    ``# divide gcdB will satisfy the conditions``    ``num ``=` `lcmA;``    ``while` `(num <``=` `__gcdB) :``        ``if` `(__gcdB ``%` `num ``=``=` `0``) :``            ``print``(num, end ``=` `" "``);``            ` `        ``num ``+``=` `lcmA;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``a ``=` `[ ``1``, ``2``, ``2``, ``4` `];``    ``b ``=` `[ ``16``, ``32``, ``64` `];``    ` `    ``n ``=` `len``(a);``    ``m ``=` `len``(b);``    ` `    ``findNumbers(a, n, b, m);``    ` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``static` `int` `__gcd(``int` `a, ``int` `b)``{``    ``if` `(b == 0)``        ``return` `a;``    ``return` `__gcd(b, a % b);``}` `// Function to return the LCM of two numbers``static` `int` `lcm(``int` `x, ``int` `y)``{``    ``int` `temp = (x * y) / __gcd(x, y);``    ``return` `temp;``}` `// Function to print the required numbers``static` `void` `findNumbers(``int` `[]a, ``int` `n,``                        ``int` `[]b, ``int` `m)``{` `    ``// To store the lcm of array a[] elements``    ``// and the gcd of array b[] elements``    ``int` `lcmA = 1, gcdB = 0;` `    ``// Finding LCM of first array``    ``for` `(``int` `i = 0; i < n; i++)``        ``lcmA = lcm(lcmA, a[i]);` `    ``// Finding GCD of second array``    ``for` `(``int` `i = 0; i < m; i++)``        ``gcdB = __gcd(gcdB, b[i]);` `    ``// No such element exists``    ``if` `(gcdB % lcmA != 0)``    ``{``        ``Console.Write(``"-1"``);``        ``return``;``    ``}` `    ``// All the multiples of lcmA which are``    ``// less than or equal to gcdB and evenly``    ``// divide gcdB will satisfy the conditions``    ``int` `num = lcmA;``    ``while` `(num <= gcdB)``    ``{``        ``if` `(gcdB % num == 0)``            ``Console.Write(num + ``" "``);``        ``num += lcmA;``    ``}``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int` `[]a = { 1, 2, 2, 4 };``    ``int` `[]b = { 16, 32, 64 };` `    ``int` `n = a.Length;``    ``int` `m = b.Length;` `    ``findNumbers(a, n, b, m);``}``}` `// This code is contributed by 29AjayKumar`

## Javascript

 ``
Output:
`4 8 16`

My Personal Notes arrow_drop_up