Counts Path in an Array

Given an array A consisting of positive integer, of size N. If the element in the array at index i is K then you can jump between index ranges (i + 1) to (i + K).
The task is to find the number of possible ways to reach the end with module 109 + 7.

The starting position is considered as index 0.

Examples:



Input: A = {5, 3, 1, 4, 3}
Output: 6

Input: A = {2, 3, 1, 1, 2}
Output: 4

Naive Approach: We can form a recursive structure to solve the problem.

Let F[i] denotes the number of paths starting at index i, at every index i if the element A[i] is K then the total number of ways the jump can be performed is:

F(i) = F(i+1) + F(i+2) +...+ F(i+k), where i + k <= n, 
where F(n) = 1

By using this recursive formula we can solve the problem:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
const int mod = 1e9 + 7;
  
// Find the number of ways
// to reach the end
int ways(int i, int arr[], int n)
{
    // Base case
    if (i == n - 1)
        return 1;
  
    int sum = 0;
  
    // Recursive structure
    for (int j = 1;
         j + i < n && j <= arr[i];
         j++) {
        sum += (ways(i + j,
                     arr, n))
               % mod;
        sum %= mod;
    }
  
    return sum % mod;
}
  
// Driver code
int main()
{
    int arr[] = { 5, 3, 1, 4, 3 };
  
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << ways(0, arr, n) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of
// the above approach
import java.io.*;
  
class GFG
{
static int mod = 1000000000;
  
// Find the number of ways
// to reach the end
static int ways(int i, 
                int arr[], int n)
{
    // Base case
    if (i == n - 1)
        return 1;
  
    int sum = 0;
  
    // Recursive structure
    for (int j = 1; j + i < n && 
                    j <= arr[i]; j++)
    {
        sum += (ways(i + j,
                     arr, n)) % mod;
        sum %= mod;
    }
    return sum % mod;
}
  
// Driver code
public static void main (String[] args)
{
    int arr[] = { 5, 3, 1, 4, 3 };
      
    int n = arr.length;
  
    System.out.println (ways(0, arr, n));
}
}
  
// This code is contributed by ajit

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of
# the above approach
  
mod = 1e9 + 7;
  
# Find the number of ways
# to reach the end
def ways(i, arr, n):
      
    # Base case
    if (i == n - 1):
        return 1;
  
    sum = 0;
  
    # Recursive structure
    for j in range(1, arr[i] + 1):
        if(i + j < n):
            sum += (ways(i + j, arr, n)) % mod;
            sum %= mod;
  
    return int(sum % mod);
  
# Driver code
if __name__ == '__main__':
    arr = [5, 3, 1, 4, 3];
  
    n = len(arr);
  
    print(ways(0, arr, n));
  
# This code is contributed by PrinciRaj1992

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of
// the above approach
using System;
      
class GFG
{
static int mod = 1000000000;
  
// Find the number of ways
// to reach the end
static int ways(int i, 
                int []arr, int n)
{
    // Base case
    if (i == n - 1)
        return 1;
  
    int sum = 0;
  
    // Recursive structure
    for (int j = 1; j + i < n && 
                    j <= arr[i]; j++)
    {
        sum += (ways(i + j,
                     arr, n)) % mod;
        sum %= mod;
    }
    return sum % mod;
}
  
// Driver code
public static void Main (String[] args)
{
    int []arr = { 5, 3, 1, 4, 3 };
      
    int n = arr.Length;
  
    Console.WriteLine(ways(0, arr, n));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

6

Efficient Approach: In the previous approach, there are some calculations that are being done more than once. It will be better to store these values in a dp array and dp[i] will store the number of paths starting at index i and ending at the end of the array.

Hence dp[0] will be the solution to the problem.

Below is the implementation of the approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation
#include <bits/stdc++.h>
using namespace std;
  
const int mod = 1e9 + 7;
  
// find the number of ways to reach the end
int ways(int arr[], int n)
{
    // dp to store value
    int dp[n + 1];
  
    // base case
    dp[n - 1] = 1;
  
    // Bottom up dp structure
    for (int i = n - 2; i >= 0; i--) {
        dp[i] = 0;
  
        // F[i] is dependent of
        // F[i+1] to F[i+k]
        for (int j = 1; ((j + i) < n
                         && j <= arr[i]);
             j++) {
            dp[i] += dp[i + j];
            dp[i] %= mod;
        }
    }
  
    // Return value of dp[0]
    return dp[0] % mod;
}
  
// Driver code
int main()
{
    int arr[] = { 5, 3, 1, 4, 3 };
  
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << ways(arr, n) % mod << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
class GFG 
{
    static final int mod = (int)(1e9 + 7); 
      
    // find the number of ways to reach the end 
    static int ways(int arr[], int n) 
    
        // dp to store value 
        int dp[] = new int[n + 1]; 
      
        // base case 
        dp[n - 1] = 1
      
        // Bottom up dp structure 
        for (int i = n - 2; i >= 0; i--) 
        
            dp[i] = 0
      
            // F[i] is dependent of 
            // F[i+1] to F[i+k] 
            for (int j = 1; ((j + i) < n && 
                              j <= arr[i]); j++)
            
                dp[i] += dp[i + j]; 
                dp[i] %= mod; 
            
        
      
        // Return value of dp[0] 
        return dp[0] % mod; 
    
      
    // Driver code 
    public static void main (String[] args)
    
        int arr[] = { 5, 3, 1, 4, 3 }; 
      
        int n = arr.length; 
      
        System.out.println(ways(arr, n) % mod); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
mod = 10**9 + 7
  
# find the number of ways to reach the end 
def ways(arr, n):
      
    # dp to store value 
    dp = [0] * (n + 1)
      
    # base case 
    dp[n - 1] = 1
      
    # Bottom up dp structure 
    for i in range(n - 2, -1, -1):
        dp[i] = 0
          
        # F[i] is dependent of 
        # F[i + 1] to F[i + k] 
        j = 1
        while((j + i) < n and j <= arr[i]):
            dp[i] += dp[i + j] 
            dp[i] %= mod 
            j += 1
      
    # Return value of dp[0] 
    return dp[0] % mod 
  
# Driver code 
arr = [5, 3, 1, 4, 3 ]
n = len(arr) 
print(ways(arr, n) % mod)
  
# This code is contributed by SHUBHAMSINGH10

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
      
class GFG 
{
    static readonly int mod = (int)(1e9 + 7); 
      
    // find the number of ways to reach the end 
    static int ways(int []arr, int n) 
    
        // dp to store value 
        int []dp = new int[n + 1]; 
      
        // base case 
        dp[n - 1] = 1; 
      
        // Bottom up dp structure 
        for (int i = n - 2; i >= 0; i--) 
        
            dp[i] = 0; 
      
            // F[i] is dependent of 
            // F[i+1] to F[i+k] 
            for (int j = 1; ((j + i) < n && 
                              j <= arr[i]); j++)
            
                dp[i] += dp[i + j]; 
                dp[i] %= mod; 
            
        
      
        // Return value of dp[0] 
        return dp[0] % mod; 
    
      
    // Driver code 
    public static void Main (String[] args)
    
        int []arr = { 5, 3, 1, 4, 3 }; 
      
        int n = arr.Length; 
      
        Console.WriteLine(ways(arr, n) % mod); 
    
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

6

Time Complexity: O(K)




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.