Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Queries on count of points lie inside a circle

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given n coordinate (x, y) of points on 2D plane and Q queries. Each query contains an integer r, the task is to count the number of points lying inside or on the circumference of the circle having radius r and centered at the origin.
Examples : 
 

Input : n = 5
Coordinates: 
1 1
2 2
3 3
-1 -1
4 4

Query 1: 3
Query 2: 32

Output :
3
5
For first query radius = 3, number of points lie
inside or on the circumference are (1, 1), (-1, -1),
(2, 2). There are only 3 points lie inside or on 
the circumference of the circle.
For second query radius = 32, all five points are
inside the circle. 

 

The equation for the circle centered at origin (0, 0) with radius r, x2 + y2 = r2. And condition for a point at (x1, y1) to lie inside or on the circumference, x12 + y12 <= r2.
A Naive approach can be for each query, traverse through all points and check the condition. This take O(n*Q) time complexity.
An Efficient approach is to precompute x2 + y2 for each point coordinate and store them in an array p[]. Now, sort the array p[]. Then apply binary search on the array to find last index with condition p[i] <= r2 for each query.
Below is the implementation of this approach: 
 

C++




// C++ program to find number of points lie inside or
// on the circumference of circle for Q queries.
#include <bits/stdc++.h>
using namespace std;
 
// Computing the x^2 + y^2 for each given points
// and sorting them.
void preprocess(int p[], int x[], int y[], int n)
{
    for (int i = 0; i < n; i++)
        p[i] = x[i] * x[i] + y[i] * y[i];
 
    sort(p, p + n);
}
 
// Return count of points lie inside or on circumference
// of circle using binary search on p[0..n-1]
int query(int p[], int n, int rad)
{
    int start = 0, end = n - 1;
    while ((end - start) > 1) {
        int mid = (start + end) / 2;
        double tp = sqrt(p[mid]);
 
        if (tp > (rad * 1.0))
            end = mid - 1;
        else
            start = mid;
    }
 
    double tp1 = sqrt(p[start]), tp2 = sqrt(p[end]);
 
    if (tp1 > (rad * 1.0))
        return 0;
    else if (tp2 <= (rad * 1.0))
        return end + 1;
    else
        return start + 1;
}
 
// Driven Program
int main()
{
    int x[] = { 1, 2, 3, -1, 4 };
    int y[] = { 1, 2, 3, -1, 4 };
    int n = sizeof(x) / sizeof(x[0]);
 
    // Compute distances of all points and keep
    // the distances sorted so that query can
    // work in O(logn) using Binary Search.
    int p[n];
    preprocess(p, x, y, n);
 
    // Print number of points in a circle of radius 3.
    cout << query(p, n, 3) << endl;
 
    // Print number of points in a circle of radius 32.
    cout << query(p, n, 32) << endl;
    return 0;
}

Java




// JAVA Code for Queries on count of
// points lie inside a circle
import java.util.*;
 
class GFG {
 
    // Computing the x^2 + y^2 for each given points
    // and sorting them.
    public static void preprocess(int p[], int x[],
                                  int y[], int n)
    {
        for (int i = 0; i < n; i++)
            p[i] = x[i] * x[i] + y[i] * y[i];
 
        Arrays.sort(p);
    }
 
    // Return count of points lie inside or on
    // circumference of circle using binary
    // search on p[0..n-1]
    public static int query(int p[], int n, int rad)
    {
        int start = 0, end = n - 1;
        while ((end - start) > 1) {
            int mid = (start + end) / 2;
            double tp = Math.sqrt(p[mid]);
 
            if (tp > (rad * 1.0))
                end = mid - 1;
            else
                start = mid;
        }
 
        double tp1 = Math.sqrt(p[start]);
        double tp2 = Math.sqrt(p[end]);
 
        if (tp1 > (rad * 1.0))
            return 0;
        else if (tp2 <= (rad * 1.0))
            return end + 1;
        else
            return start + 1;
    }
 
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int x[] = { 1, 2, 3, -1, 4 };
        int y[] = { 1, 2, 3, -1, 4 };
        int n = x.length;
 
        // Compute distances of all points and keep
        // the distances sorted so that query can
        // work in O(logn) using Binary Search.
        int p[] = new int[n];
        preprocess(p, x, y, n);
 
        // Print number of points in a circle of
        // radius 3.
        System.out.println(query(p, n, 3));
 
        // Print number of points in a circle of
        // radius 32.
        System.out.println(query(p, n, 32));
    }
}
// This code is contributed by Arnav Kr. Mandal.

Python 3




# Python 3 program to find number of
# points lie inside or on the circumference
# of circle for Q queries.
import math
 
# Computing the x^2 + y^2 for each
# given points and sorting them.
def preprocess(p, x, y, n):
    for i in range(n):
        p[i] = x[i] * x[i] + y[i] * y[i]
 
    p.sort()
 
# Return count of points lie inside
# or on circumference of circle using
# binary search on p[0..n-1]
def query(p, n, rad):
 
    start = 0
    end = n - 1
    while ((end - start) > 1):
        mid = (start + end) // 2
        tp = math.sqrt(p[mid])
 
        if (tp > (rad * 1.0)):
            end = mid - 1
        else:
            start = mid
 
    tp1 = math.sqrt(p[start])
    tp2 = math.sqrt(p[end])
 
    if (tp1 > (rad * 1.0)):
        return 0
    else if (tp2 <= (rad * 1.0)):
        return end + 1
    else:
        return start + 1
 
# Driver Code
if __name__ == "__main__":
     
    x = [ 1, 2, 3, -1, 4 ]
    y = [ 1, 2, 3, -1, 4 ]
    n = len(x)
 
    # Compute distances of all points and keep
    # the distances sorted so that query can
    # work in O(logn) using Binary Search.
    p = [0] * n
    preprocess(p, x, y, n)
 
    # Print number of points in a
    # circle of radius 3.
    print(query(p, n, 3))
 
    # Print number of points in a
    # circle of radius 32.
    print(query(p, n, 32))
 
# This code is contributed by ita_c

C#




// C# Code for Queries on count of
// points lie inside a circle
using System;
 
class GFG {
 
    // Computing the x^2 + y^2 for each
    // given points and sorting them.
    public static void preprocess(int[] p, int[] x,
                                    int[] y, int n)
    {
        for (int i = 0; i < n; i++)
            p[i] = x[i] * x[i] + y[i] * y[i];
 
        Array.Sort(p);
    }
 
    // Return count of points lie inside or on
    // circumference of circle using binary
    // search on p[0..n-1]
    public static int query(int[] p, int n, int rad)
    {
        int start = 0, end = n - 1;
        while ((end - start) > 1) {
            int mid = (start + end) / 2;
            double tp = Math.Sqrt(p[mid]);
 
            if (tp > (rad * 1.0))
                end = mid - 1;
            else
                start = mid;
        }
 
        double tp1 = Math.Sqrt(p[start]);
        double tp2 = Math.Sqrt(p[end]);
 
        if (tp1 > (rad * 1.0))
            return 0;
        else if (tp2 <= (rad * 1.0))
            return end + 1;
        else
            return start + 1;
    }
 
    /* Driver program to test above function */
    public static void Main()
    {
        int[] x = { 1, 2, 3, -1, 4 };
        int[] y = { 1, 2, 3, -1, 4 };
        int n = x.Length;
 
        // Compute distances of all points and keep
        // the distances sorted so that query can
        // work in O(logn) using Binary Search.
        int[] p = new int[n];
        preprocess(p, x, y, n);
 
        // Print number of points in a circle of
        // radius 3.
        Console.WriteLine(query(p, n, 3));
 
        // Print number of points in a circle of
        // radius 32.
        Console.WriteLine(query(p, n, 32));
    }
}
 
// This code is contributed by vt_m.

Javascript




<script>
 
// Javascript Code for Queries on count of
// points lie inside a circle
     
    // Computing the x^2 + y^2 for each given points
    // and sorting them.
    function preprocess(p,x,y,n)
    {
        for (let i = 0; i < n; i++)
            p[i] = x[i] * x[i] + y[i] * y[i];
         
        p.sort(function(a,b){return a-b;});
         
    }
     
    // Return count of points lie inside or on
    // circumference of circle using binary
    // search on p[0..n-1]
    function query(p,n,rad)
    {
        let start = 0, end = n - 1;
        while ((end - start) > 1) {
            let mid = Math.floor((start + end) / 2);
            let tp = Math.sqrt(p[mid]);
   
            if (tp > (rad * 1.0))
                end = mid - 1;
            else
                start = mid;
        }
   
        let tp1 = Math.sqrt(p[start]);
        let tp2 = Math.sqrt(p[end]);
   
        if (tp1 > (rad * 1.0))
            return 0;
        else if (tp2 <= (rad * 1.0))
            return end + 1;
        else
            return start + 1;
    }
     
    /* Driver program to test above function */
    let x=[1, 2, 3, -1, 4 ];
    let y=[1, 2, 3, -1, 4];
    let n = x.length;
     
    // Compute distances of all points and keep
    // the distances sorted so that query can
    // work in O(logn) using Binary Search.
    let p=new Array(n);
    for(let i=0;i<n;i++)
    {
        p[i]=0;
    }
    preprocess(p, x, y, n);
 
    // Print number of points in a circle of
    // radius 3.
    document.write(query(p, n, 3)+"<br>");
 
    // Print number of points in a circle of
    // radius 32.
    document.write(query(p, n, 32)+"<br>");
     
    // This code is contributed by rag2127
     
</script>

Output: 

3
5

Time Complexity: O(n log n) for preprocessing and O(Q Log n) for Q queries.
Auxiliary Space: O(n) it is using extra space for array p

This article is contributed by Aarti_Rathi and Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Last Updated : 30 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials