Count of integral points that lie at a distance D from origin
Given a positive integer D, the task is to find the number of integer coordinates (x, y) which lie at a distance D from origin.
Example:
Input: D = 1
Output: 4
Explanation: Total valid points are {1, 0}, {0, 1}, {-1, 0}, {0, -1}Input: D = 5
Output: 12
Explanation: Total valid points are {0, 5}, {0, -5}, {5, 0}, {-5, 0}, {3, 4}, {3, -4}, {-3, 4}, {-3, -4}, {4, 3}, {4, -3}, {-4, 3}, {-4, -3}
Approach: This question can be simplified to count integer coordinates lying on the circumference of the circle centered at the origin, having a radius D and can be solved with the help of the Pythagoras theorem. As the points should be at a distance D from the origin, so they all must satisfy the equation x * x + y * y = D2 where (x, y) are the coordinates of the point.
Now, to solve the above problem, follow the below steps:
- Initialize a variable, say count that stores the total count of the possible pairs of coordinates.
- Iterate over all possible x coordinates and calculate the corresponding value of y as sqrt(D2 – y*y).
- Since every coordinate whose both x and y are positive integers can form a total of 4 possible valid pairs as {x, y}, {-x, y}, {-x, -y}, {x, -y} and increment the count each possible pair (x, y) by 4 in the variable count.
- Also, there is always an integer coordinate present at the circumference of the circle where it cuts the x-axis and y-axis because the radius of the circle is an integer. So add 4 in count, to compensate these points.
- After completing the above steps, print the value of count as the resultant count of pairs.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the total valid // integer coordinates at a distance D // from origin int countPoints( int D) { // Stores the count of valid points int count = 0; // Iterate over possible x coordinates for ( int x = 1; x * x < D * D; x++) { // Find the respective y coordinate // with the pythagoras theorem int y = ( int ) sqrt ( double (D * D - x * x)); if (x * x + y * y == D * D) { count += 4; } } // Adding 4 to compensate the coordinates // present on x and y axes. count += 4; // Return the answer return count; } // Driver Code int main() { int D = 5; cout << countPoints(D); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to find the total valid // integer coordinates at a distance D // from origin static int countPoints( int D) { // Stores the count of valid points int count = 0 ; // Iterate over possible x coordinates for ( int x = 1 ; x * x < D * D; x++) { // Find the respective y coordinate // with the pythagoras theorem int y = ( int )Math.sqrt((D * D - x * x)); if (x * x + y * y == D * D) { count += 4 ; } } // Adding 4 to compensate the coordinates // present on x and y axes. count += 4 ; // Return the answer return count; } // Driver Code public static void main (String[] args) { int D = 5 ; System.out.println(countPoints(D)); } } // this code is contributed by shivanisinghss2110 |
Python3
# python 3 program for the above approach from math import sqrt # Function to find the total valid # integer coordinates at a distance D # from origin def countPoints(D): # Stores the count of valid points count = 0 # Iterate over possible x coordinates for x in range ( 1 , int (sqrt(D * D)), 1 ): # Find the respective y coordinate # with the pythagoras theorem y = int (sqrt((D * D - x * x))) if (x * x + y * y = = D * D): count + = 4 # Adding 4 to compensate the coordinates # present on x and y axes. count + = 4 # Return the answer return count # Driver Code if __name__ = = '__main__' : D = 5 print (countPoints(D)) # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# program for the above approach using System; // Function to find the total valid // integer coordinates at a distance D // from origin public class GFG{ static int countPoints( int D){ // Stores the count of valid points int count = 0; // Iterate over possible x coordinates for ( int x = 1; x*x < D*D; x++){ int y = ( int )Math.Sqrt((D * D - x * x)); // Find the respective y coordinate // with the pythagoras theorem if (x * x + y * y == D * D){ count += 4; } } // Adding 4 to compensate the coordinates // present on x and y axes. count += 4; // Return the answer return count; } // Driver Code public static void Main(){ int D = 5; Console.Write(countPoints(D)); } } // This code is contributed by gfgking |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to find the total valid // integer coordinates at a distance D // from origin function countPoints(D) { // Stores the count of valid points let count = 0; // Iterate over possible x coordinates for (let x = 1; x * x < D * D; x++) { // Find the respective y coordinate // with the pythagoras theorem let y = Math.floor(Math.sqrt(D * D - x * x)); if (x * x + y * y == D * D) { count += 4; } } // Adding 4 to compensate the coordinates // present on x and y axes. count += 4; // Return the answer return count; } // Driver Code let D = 5; document.write(countPoints(D)); // This code is contributed by Potta Lokesh </script> |
12
Time Complexity: O(R)
Auxiliary Space: O(1)
Please Login to comment...