Open In App
Related Articles

Python – tensorflow.math.reduce_std()

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

reduce_std() is used to find standard deviation of elements across dimensions of a tensor.

Syntax: tensorflow.math.reduce_std( input_tensor, axis, keepdims, name)

Parameters:

  • input_tensor: It is numeric tensor to reduce.
  • axis(optional): It represent the dimensions to  reduce. It’s value should be in range [-rank(input_tensor), rank(input_tensor)). If no value is given for this all dimensions are reduced.
  • keepdims(optional): It’s default value is False. If it’s set to True it will retain the reduced dimension with length 1.
  • name(optional): It defines the name for the operation.

Returns: It returns a tensor.

Example 1:

Python3

# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4], dtype = tf.float64)
 
# Printing the input tensor
print('Input: ', a)
 
# Calculating result
res = tf.math.reduce_std(a)
 
# Printing the result
print('Result: ', res)

                    

Output:

Input:  tf.Tensor([1. 2. 3. 4.], shape=(4, ), dtype=float64)
Result:  tf.Tensor(1.118033988749895, shape=(), dtype=float64)

Example 2:

Python3

# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([[1, 2], [3, 4]], dtype = tf.float64)
 
# Printing the input tensor
print('Input: ', a)
 
# Calculating result
res = tf.math.reduce_std(a, axis = 1, keepdims = True)
 
# Printing the result
print('Result: ', res)

                    

Output:

Input:  tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float64)
Result:  tf.Tensor(
[[0.5]
 [0.5]], shape=(2, 1), dtype=float64)


Last Updated : 31 Aug, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads