Skip to content
Related Articles

Related Articles

Improve Article

Python – tensorflow.math.cumulative_logsumexp()

  • Last Updated : 05 Jul, 2021

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks. 

cumulative_logsumexp() is used to calculate the cumulative log-sum-exp of input tensor. This operation is equivalent to tensorflow.math.log( tensorflow.math.cumsum( tensorflow.math.exp(x))) but it is numerically more stable.

Syntax: tensorflow.math.cumulative_logsumexp(   x, axis, exclusive, reverse, name)

Parameters: 

  • x: It’s the input tensor. Allowed dtypes for this tensor are  float16, float32, float64.
  • axis(optional): It’s a tensor of type int32. It’s value should  be in the range  A Tensor of type int32 (default: 0). Must be in the range [-rank(x), rank(x)).  Default value is 0.
  • exclusive(optional): It’s of type bool. Default value is False.
  • reverse(optional): It’s of type bool. Default value is False.
  • name(optional): It’s defines the name for the operation.

Returns:



It returns a tensor of same dtype as x.

Example 1:

Python3




# importing the library
import tensorflow as tf
 
# initializing the input
a = tf.constant([1, 2, 4, 5], dtype = tf.float64) 
 
# Printing the input
print("Input: ",a)
 
# Cumulative log-sum-exp
res  = tf.math.cumulative_logsumexp(a)
 
# Printing the result
print("Output: ",res)

Output:

Input:  tf.Tensor([1. 2. 4. 5.], shape=(4,), dtype=float64)
Output:  tf.Tensor([1.         2.31326169 4.16984602 5.36184904], shape=(4,), dtype=float64)

Example 2: In this example both reverse and exclusive are set to True.

Python3




# importing the library
import tensorflow as tf
 
# initializing the input
a = tf.constant([2, 3, 4, 5], dtype = tf.float64) 
 
# Printing the input
print("Input: ",a)
 
# Cumulative log-sum-exp
res  = tf.math.cumulative_logsumexp(a, reverse = True, exclusive = True)
 
# Printing the result
print("Output: ",res)

Output: 

Input:  tf.Tensor([2. 3. 4. 5.], shape=(4,), dtype=float64)
Output:  tf.Tensor([ 5.40760596e+000  5.31326169e+000  5.00000000e+000 -1.79769313e+308], shape=(4,), dtype=float64)

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :