Open In App
Related Articles

Python | PyTorch tan() method

Improve Article
Improve
Save Article
Save
Like Article
Like

PyTorch is an open-source machine learning library developed by Facebook. It is used for deep neural network and natural language processing purposes.

The function torch.tan() provides support for the tangent function in PyTorch. It expects the input in radian form and the output is in the range [-∞, ∞]. The input type is tensor and if the input contains more than one element, element-wise tangent is computed.

Syntax: torch.tan(x, out=None)

Parameters:
x: Input tensor
name (optional): Output tensor

Return type: A tensor with the same type as that of x.

Code #1:

Python3




# Importing the PyTorch library
import torch
  
# A constant tensor of size 6
a = torch.FloatTensor([1.0, -0.5, 3.4, -2.1, 0.0, -6.5])
print(a)
  
# Applying the tan function and
# storing the result in 'b'
b = torch.tan(a)
print(b)


Output:

 1.0000
-0.5000
 3.4000
-2.1000
 0.0000
-6.5000
[torch.FloatTensor of size 6]


 1.5574
-0.5463
 0.2643
 1.7098
 0.0000
-0.2203
[torch.FloatTensor of size 6]

 

Code #2: Visualization

Python3




# Importing the PyTorch library
import torch
  
# Importing the NumPy library
import numpy as np
  
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
  
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
  
# Applying the tangent function and
# storing the result in 'b'
b = torch.tan(torch.FloatTensor(a))
  
print(b)
  
# Plotting
plt.plot(a, b.numpy(), color = 'red', marker = "o"
plt.title("torch.tan"
plt.xlabel("X"
plt.ylabel("Y"
  
plt.show()


Output:

-1.5574
-1.1549
-0.8670
-0.6430
-0.4569
-0.2938
-0.1438
 0.0000
 0.1438
 0.2938
 0.4569
 0.6430
 0.8670
 1.1549
 1.5574
[torch.FloatTensor of size 15]


Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 05 Jan, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials