Skip to content
Related Articles

Related Articles

Python | PyTorch cos() method
  • Last Updated : 13 Dec, 2018

PyTorch is an open-source machine learning library developed by Facebook. It is used for deep neural network and natural language processing purposes.

The function torch.cos() provides support for the cosine function in PyTorch. It expects the input in radian form and the output is in the range [-1, 1]. The input type is tensor and if the input contains more than one element, element-wise cosine is computed.

Syntax: torch.cos(x, out=None)

Parameters:
x: Input tensor
name (optional): Output tensor

Return type: A tensor with the same type as that of x.



Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing the PyTorch library
import torch
  
# A constant tensor of size 6
a = torch.FloatTensor([1.0, -0.5, 3.4, -2.1, 0.0, -6.5])
print(a)
  
# Applying the cos function and
# storing the result in 'b'
b = torch.cos(a)
print(b)

chevron_right


Output:

 1.0000
-0.5000
 3.4000
-2.1000
 0.0000
-6.5000
[torch.FloatTensor of size 6]


 0.5403
 0.8776
-0.9668
-0.5048
 1.0000
 0.9766
[torch.FloatTensor of size 6]

 

Code #2: Visualization

filter_none

edit
close

play_arrow

link
brightness_4
code

# Importing the PyTorch library
import torch
  
# Importing the NumPy library
import numpy as np
  
# Importing the matplotlib.pylot function
import matplotlib.pyplot as plt
  
# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)
  
# Applying the cosine function and
# storing the result in 'b'
b = torch.cos(torch.FloatTensor(a))
  
print(b)
  
# Plotting
plt.plot(a, b.numpy(), color = 'red', marker = "o"
plt.title("torch.cos"
plt.xlabel("X"
plt.ylabel("Y"
  
plt.show()

chevron_right


Output:

 0.2837
-0.4138
-0.9090
-0.9598
-0.5414
 0.1417
 0.7556
 1.0000
 0.7556
 0.1417
-0.5414
-0.9598
-0.9090
-0.4138
 0.2837
[torch.FloatTensor of size 15]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :