Open In App
Related Articles

Python – tensorflow.raw_ops.Cos()

Improve Article
Improve
Save Article
Save
Like Article
Like

TensorFlow is open-source python library designed by Google to develop Machine Learning models and deep learning  neural networks. TensorFlow raw_ops provides low level access to all TensorFlow operations. Cos() is used to find element wise cosine of x.

Syntax: tf.raw_ops.Cos(x, name)

Parameters: 

  • x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64. 
  • name(optional): It defines the name for the operation.
     

Returns:  It returns a tensor of same dtype as x.
 

Note: It only takes keyword arguments.

Example 1:

Python3




# Importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
 
# Printing the input tensor
print('Input: ', a)
 
# Calculating cosine
res = tf.raw_ops.Cos(x = a)
 
# Printing the result
print('Result: ', res)


Output:

Input:  tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64)
Result:  tf.Tensor([ 0.54030231 -0.41614684 -0.9899925  -0.65364362  0.28366219], shape=(5, ), dtype=float64)

Example 2: Visualization

Python3




# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
 
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
 
# Calculating cosine
res = tf.raw_ops.Cos(x = a)
 
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.raw_ops.Cos')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()


Output:


Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 06 Mar, 2023
Like Article
Save Article
Similar Reads
Related Tutorials