Skip to content
Related Articles

Related Articles

Improve Article

Python Bokeh – Plotting Vertical Bar Graphs

  • Difficulty Level : Easy
  • Last Updated : 13 Jul, 2020

Bokeh is a Python interactive data visualization. It renders its plots using HTML and JavaScript. It targets modern web browsers for presentation providing elegant, concise construction of novel graphics with high-performance interactivity.

Bokeh can be used to plot vertical bar graphs. Plotting vertical bar graphs can be done using the vbar() method of the plotting module.

plotting.figure.vbar()

Syntax : vbar(parameters)

Parameters :

  • x : x-coordinates of the center of the vertical bars
  • width : thickness of the vertical bars
  • top : y-coordinates of the top edges
  • bottom : y-coordinates of the bottom edges, default is 0
  • fill_alpha : fill alpha value of the vertical bars
  • fill_color : fill color value of the vertical bars
  • hatch_alpha : hatch alpha value of the vertical bars, default is 1
  • hatch_color : hatch color value of the vertical bars, default is black
  • hatch_extra : hatch extra value of the vertical bars
  • hatch_pattern : hatch pattern value of the vertical bars
  • hatch_scale : hatch scale value of the vertical bars, default is 12
  • hatch_weight : hatch weight value of the vertical bars, default is 1
  • line_alpha : percentage value of line alpha, default is 1
  • line_cap : value of line cap for the line, default is butt
  • line_color : color of the line, default is black
  • line_dash : value of line dash such as :
    • solid
    • dashed
    • dotted
    • dotdash
    • dashdot

    default is solid

  • line_dash_offset : value of line dash offset, default is 0
  • line_join : value of line join, default in bevel
  • line_width : value of the width of the line, default is 1
  • name : user-supplied name for the model
  • tags : user-supplied values for the model

Other Parameters :



  • alpha : sets all alpha keyword arguments at once
  • color : sets all color keyword arguments at once
  • legend_field : name of a column in the data source that should be used
  • legend_group : name of a column in the data source that should be used
  • legend_label : labels the legend entry
  • muted : determines whether the glyph should be rendered as muted or not, default is False
  • name : optional user-supplied name to attach to the renderer
  • source : user-supplied data source
  • view : view for filtering the data source
  • visible : determines whether the glyph should be rendered or not, default is True
  • x_range_name : name of an extra range to use for mapping x-coordinates
  • y_range_name : name of an extra range to use for mapping y-coordinates
  • level : specifies the render level order for this glyph

Returns : an object of class GlyphRenderer

Example 1 :In this example we will be using the default values for plotting the graph.




# importing the modules
from bokeh.plotting import figure, output_file, show
   
# file to save the model
output_file("gfg.html")
       
# instantiating the figure object
graph = figure(title = "Bokeh Vertical Bar Graph")
   
# x-coordinates to be plotted
x = [1, 2, 3, 4, 5]
   
# x-coordinates of the top edges
top = [1, 2, 3, 4, 5]
   
# width / thickness of the bars 
width = 0.5
   
# plotting the graph
graph.vbar(x,
           top = top,
           width = width)
   
# displaying the model
show(graph)

Output :

Example 2 :In this example we will be plotting verticle bars with different parameters.




# importing the modules
from bokeh.plotting import figure, output_file, show
   
# file to save the model
output_file("gfg.html")
       
# instantiating the figure object
graph = figure(title = "Bokeh Vertical Bar Graph")
  
# name of the x-axis
graph.xaxis.axis_label = "x-axis"
       
# name of the y-axis
graph.yaxis.axis_label = "y-axis"
   
# x-coordinates to be plotted
x = [1, 2, 3, 4, 5]
   
# x-coordinates of the top edges
top = [1, 2, 3, 4, 5]
   
# width / thickness of the bars 
width = [0.5, 0.4, 0.3, 0.2, 0.1]
  
# color values of the bars
fill_color = ["yellow", "pink", "blue", "green", "purple"]
   
# plotting the graph
graph.vbar(x,
           top = top,
           width = width,
           fill_color = fill_color)
   
# displaying the model
show(graph)

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :