# Program to print GP (Geometric Progression)

Given first term (a), common ratio (r) and a integer n of the Geometric Progression series, the task is to print th n terms of the series.

Examples:

Input : a = 2 r = 2, n = 4 Output : 2 4 8 16

**Approach :**

We know the Geometric Progression series is like = 2, 4, 8, 16, 32 …….

In this series 2 is the stating term of the series .

Common ratio = 4 / 2 = 2 (ratio common in the series).

so we can write the series as :t1 = a1

t2 = a1 * r^{(2-1)}

t3 = a1 * r^{(3-1)}

t4 = a1 * r^{(4-1)}

.

.

.

.

tN = a1 * r^{(n-1)}

To print the Geometric Progression series we use the simple formula .

T_{N}= a1 * r^{(n-1)}

## CPP

`// CPP program to print GP. ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `void` `printGP(` `int` `a, ` `int` `r, ` `int` `n) ` `{ ` ` ` `int` `curr_term; ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `curr_term = a * ` `pow` `(r, i); ` ` ` `cout << curr_term << ` `" "` `; ` ` ` `} ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `a = 2; ` `// starting number ` ` ` `int` `r = 3; ` `// Common ratio ` ` ` `int` `n = 5; ` `// N th term to be find ` ` ` `printGP(a, r, n); ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to print GP. ` `class` `GFG { ` ` ` `static` `void` `printGP(` `int` `a, ` `int` `r, ` `int` `n) ` ` ` `{ ` ` ` `int` `curr_term; ` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++) { ` ` ` `curr_term = a * (` `int` `)Math.pow(r, i); ` ` ` `System.out.print(curr_term + ` `" "` `); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` `int` `a = ` `2` `; ` `// starting number ` ` ` `int` `r = ` `3` `; ` `// Common ratio ` ` ` `int` `n = ` `5` `; ` `// N th term to be find ` ` ` `printGP(a, r, n); ` ` ` `} ` `} ` `// This code is contributed by Anant Agarwal. ` |

*chevron_right*

*filter_none*

## Python3

`# Python 3 program to print GP. ` ` ` `def` `printGP(a, r, n): ` ` ` `for` `i ` `in` `range` `(` `0` `, n): ` ` ` `curr_term ` `=` `a ` `*` `pow` `(r, i) ` ` ` `print` `(curr_term, end ` `=` `" "` `) ` ` ` ` ` `# Driver code ` ` ` `a ` `=` `2` `# starting number ` `r ` `=` `3` `# Common ratio ` `n ` `=` `5` `# N th term to be find ` ` ` `printGP(a, r, n) ` ` ` `# This code is contributed by ` `# Smitha Dinesh Semwal ` |

*chevron_right*

*filter_none*

## C#

`// C# program to print GP. ` `using` `System; ` ` ` `class` `GFG { ` ` ` ` ` `static` `void` `printGP(` `int` `a, ` `int` `r, ` `int` `n) ` ` ` `{ ` ` ` ` ` `int` `curr_term; ` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` `curr_term = a * (` `int` `)Math.Pow(r, i); ` ` ` `Console.Write(curr_term + ` `" "` `); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` ` ` `int` `a = 2; ` `// starting number ` ` ` `int` `r = 3; ` `// Common ratio ` ` ` `int` `n = 5; ` `// N th term to be find ` ` ` ` ` `printGP(a, r, n); ` ` ` `} ` `} ` ` ` `// This code is contributed by vt_m. ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP program to print GP. ` ` ` `// function to print GP ` `function` `printGP(` `$a` `, ` `$r` `, ` `$n` `) ` `{ ` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$n` `; ` `$i` `++) ` ` ` `{ ` ` ` `$curr_term` `= ` `$a` `* pow(` `$r` `, ` `$i` `); ` ` ` `echo` `$curr_term` `, ` `" "` `; ` ` ` `} ` `} ` ` ` ` ` `// Driver Code ` ` ` ` ` `// starting number ` ` ` `$a` `= 2; ` ` ` ` ` `// Common ratio ` ` ` `$r` `= 3; ` ` ` ` ` `// N th term to be find ` ` ` `$n` `= 5; ` ` ` `printGP(` `$a` `, ` `$r` `, ` `$n` `); ` ` ` `// This code is contributed by ajit. ` `?> ` |

*chevron_right*

*filter_none*

**Output:**

2 6 18 54 162

## Recommended Posts:

- Program for N-th term of Geometric Progression series
- Geometric Progression
- Number of GP (Geometric Progression) subsequences of size 3
- Removing a number from array to make it Geometric Progression
- Program to print Arithmetic Progression series
- Minimum number of operations to convert a given sequence into a Geometric Progression
- Program for sum of geometric series
- Program for N-th term of Arithmetic Progression series
- Geometric mean (Two Methods)
- Sum of Arithmetic Geometric Sequence
- Find N Geometric Means between A and B
- Find Harmonic mean using Arithmetic mean and Geometric mean
- Program to print Hut
- Harmonic progression Sum
- Harmonic Progression

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.