Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Program to find the Nth term of the series 3, 7, 13, 21, 31…..

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a number N, the task is to find the Nth term of this series:

3, 7, 13, 21, 31, …….

Examples: 

Input: N = 4
Output: 21
Explanation:
Nth term = (pow(N, 2) + N + 1)
         = (pow(4, 2) + 4 + 1)
         = 21

Input: N = 11
Output: 133

Approach:
Sum = 0+3+7+13+21+31+........+a_{n-1} + a_n\\ Sum = 3+7+13+21+31+...+a_{n-2}+a_{n-1}+a_n
Subtracting these two equations we get 
 0=3+\left \{\frac{n-1}{2}\right \}[2*4 + (n-2)*2]-a_n\\ =3+\left \{\frac{n-1}{2}\right \}[8 + 2n-4]-a_n\\ =3+\left \{\frac{n-1}{2}\right \}[2n+4]-a_n\\ a_n=3+(n-1)(n+2)\\ a_n=n^2+n+1
Therefore, the Nth Term of the given series is: 

a_n=n^2+n+1

Below is the implementation of the above approach: 

C++




// CPP program to find the Nth term of given series.
#include <iostream>
#include <math.h>
using namespace std;
 
// Function to calculate sum
long long int getNthTerm(long long int N)
{
    // Return Nth term
    return (pow(N, 2) + N + 1);
}
 
// driver code
int main()
{
    // declaration of number of terms
    long long int N = 11;
 
    // Get the Nth term
    cout << getNthTerm(N);
 
    return 0;
}

Java




// Java code to find the Nth term of given series.
import java.util.*;
 
class solution
{
 
// Function to calculate sum
static long getNthTerm(long N)
{
     
   // Return Nth term
    return ((int)Math.pow(N, 2) + N + 1);
}
 
//Driver program
public static void main(String arr[])
{
     
   // declaration of number of terms
    long N = 11;
 
    // Get the Nth term
    System.out.println(getNthTerm(N));
 
}
}
//THis code is contributed by
//Surendra_Gangwar

Python3




# Python3 Code to find the
# Nth term of given series.
 
# Function to calculate sum
def getNthTerm(N):
     
    # Return Nth term
    return (pow(N, 2) + N + 1)
 
# driver code
if __name__=='__main__':
     
# declaration of number of terms
    N = 11
     
# Get the Nth term
    print(getNthTerm(N))
 
# This code is contributed by
# Sanjit_Prasad

C#




// C# code to find the Nth
// term of given series.
using System;
 
class GFG
{
 
// Function to calculate sum
static long getNthTerm(long N)
{
     
// Return Nth term
    return ((int)Math.Pow(N, 2) + N + 1);
}
 
// Driver Code
static public void Main ()
{
     
    // declaration of number
    // of terms
    long N = 11;
 
    // Get the Nth term
    Console.Write(getNthTerm(N));
}
}
 
// This code is contributed by Raj

PHP




<?php
// PHP program to find the
// Nth term of given series
 
// Function to calculate sum
function getNthTerm($N)
{
    // Return Nth term
    return (pow($N, 2) + $N + 1);
}
 
// Driver code
 
// declaration of number of terms
$N = 11;
 
// Get the Nth term
echo getNthTerm($N);
 
// This code is contributed by Raj
?>

Javascript




<script>
// JavaScript program to find the Nth term of given series.
 
// Function to calculate sum
function getNthTerm(N)
{
    // Return Nth term
    return (Math.pow(N, 2) + N + 1);
}
   
// driver code
 
   // declaration of number of terms
   let N = 11;
   
   // Get the Nth term
   document.write(getNthTerm(N));
   
// This code is contributed by Surbhi Tyagi
 
</script>

Output: 

133

 

Time Complexity: O(1)
Space Complexity: O(1) since using constant variables
 

Method 2: We can also solve the problem by the formula [ (n+1)2-n  ]. 

C++




// CPP program to find the Nth term of given series.
#include <iostream>
#include <math.h>
using namespace std;
 
// Function to calculate sum
long long int getNthTerm(long long int N)
{
    // Return Nth term
    return (pow(N + 1, 2) - N);
}
 
// driver code
int main()
{
    // declaration of number of terms
    long long int N = 11;
 
    // Get the Nth term
    cout << getNthTerm(N);
 
    return 0;
}

Python3




# Python program to find the Nth term of given series.
import math
 
# Function to calculate sum
def getNthTerm(N):
    # Return Nth term
    return int(math.pow(N + 1, 2) - N)
 
# driver code
if __name__ == '__main__':
    # declaration of number of terms
    N = 11
 
    # Get the Nth term
    print(getNthTerm(N))

Output

133

Time Complexity: O(logN)
Space Complexity: O(1) since using constant variables


My Personal Notes arrow_drop_up
Last Updated : 19 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials