Program to find Nth term in the series 0, 2, 1, 3, 1, 5, 2, 7, 3,…

Given a number N. The task is to write a program to find the N-th term in the below series:

0, 2, 1, 3, 1, 5, 2, 7, 3, …

Examples:

Input: N = 5
Output: 1

Input: N = 10
Output: 11

When we look carefully at the series, we find that the series is a mixture of 2 series:

  1. Terms at odd positions in the given series forms fibonacci series.
  2. Terms at even positions in the given series forms a series of prime numbers.

Now, To solve the above-given problem, first check whether the input number N is even or odd.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find N-th term
// in the series
#include<bits/stdc++.h>
#define MAX 1000
using namespace std;
  
// Function to find Nth Prime Number
int NthPrime(int n)
{
    int count = 0;
    for (int i = 2; i <= MAX; i++) {
        int check = 0;
        for (int j = 2; j <= sqrt(i); j++) {
            if (i % j == 0) {
                check = 1;
                break;
            }
        }
        if (check == 0)
            count++;
  
        if (count == n) {
            return i;
            break;
        }
    }
}
  
// Function to find Nth Fibonacci Number
int NthFib(int n)
{
    // Declare an array to store 
    // Fibonacci numbers.
    int f[n + 2];
    int i;
  
    // 0th and 1st number of the
    // series are 0 and 1
    f[0] = 0;
    f[1] = 1;
  
    for (i = 2; i <= n; i++) {
        f[i] = f[i - 1] + f[i - 2];
    }
  
    return f[n];
}
  
// Function to find N-th term
// in the series
void findNthTerm(int n)
{
    // If n is even
    if (n % 2 == 0) {
        n = n / 2;
        n = NthPrime(n);
        cout << n << endl;
    }
  
    // If n is odd
    else {
        n = (n / 2) + 1;
        n = NthFib(n - 1);
        cout << n << endl;
    }
}
  
// Driver code
int main()
{
    int X = 5;
    findNthTerm(X);
  
    X = 10;
    findNthTerm(X);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find N-th 
// term in the series
class GFG 
{
  
static int MAX = 1000;
  
// Function to find Nth Prime Number
static int NthPrime(int n)
{
int count = 0;
int i;
for (i = 2; i <= MAX; i++) 
{
    int check = 0;
    for (int j = 2; j <= Math.sqrt(i); j++)
    {
        if (i % j == 0
        {
            check = 1;
            break;
        }
    }
    if (check == 0)
        count++;
  
    if (count == n) 
    {
        return i;
          
    }
}
    return 0;
}
  
// Function to find Nth Fibonacci Number
static int NthFib(int n)
{
// Declare an array to store 
// Fibonacci numbers.
int []f = new int[n + 2];
int i;
  
// 0th and 1st number of the
// series are 0 and 1
f[0] = 0;
f[1] = 1;
  
for (i = 2; i <= n; i++) 
{
    f[i] = f[i - 1] + f[i - 2];
}
  
return f[n];
}
  
// Function to find N-th term
// in the series
static void findNthTerm(int n)
{
// If n is even
if (n % 2 == 0
{
    n = n / 2;
    n = NthPrime(n);
    System.out.println(n);
}
  
// If n is odd
else 
{
    n = (n / 2) + 1;
    n = NthFib(n - 1);
    System.out.println(n);
}
}
  
// Driver code
public static void main(String[] args) 
{
    int X = 5;
    findNthTerm(X);
  
    X = 10;
    findNthTerm(X);
}
}
  
// This code is contributed 
// by ChitraNayal

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find N-th 
# term in the series 
  
# import sqrt method from math module
from math import sqrt
  
# Globally declare constant value
MAX = 1000
  
# Function to find Nth Prime Number
def NthPrime(n) :
      
    count = 0
    for i in range(2, MAX + 1) :
          
        check = 0
        for j in range(2, int(sqrt(i)) + 1) :
              
            if i % j == 0 :
                check = 1
                break
  
        if check == 0 :
            count += 1
  
        if count == n :
            return i
            break
  
# Function to find Nth Fibonacci Number
def NthFib(n) :
  
    # Create a list of size n+2
    # to store Fibonacci numbers. 
    f = [0] * (n + 2)
  
    # 0th and 1st number of the 
    # series are 0 and 1 
    f[0], f[1] = 0, 1
  
    for i in range(2, n + 1) :
  
        f[i] = f[i - 1] + f[i - 2]
  
    return f[n]
  
# Function to find N-th 
# term in the series 
def findNthTerm(n) :
  
    # If n is even 
    if n % 2 == 0 :
        n //= 2
        n = NthPrime(n)
        print(n)
  
    # If n is odd
    else :
        n = (n // 2) + 1
        n = NthFib(n - 1)
        print(n)
  
# Driver code
if __name__ == "__main__" :
  
    X = 5
  
    # function calling
    findNthTerm(X)
  
    X = 10
    findNthTerm(X)
      
# This code is contributed by ANKITRAI1

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find N-th term
// in the series
using System;
  
class GFG 
{
static int MAX = 1000;
  
// Function to find Nth Prime Number
static int NthPrime(int n)
{
int count = 0;
int i;
for ( i = 2; i <= MAX; i++) 
{
    int check = 0;
    for (int j = 2; j <= Math.Sqrt(i); j++) 
    {
        if (i % j == 0) 
        {
            check = 1;
            break;
        }
    }
    if (check == 0)
        count++;
  
    if (count == n) 
    {
        return i;
    }
}
    return 0;
}
  
// Function to find Nth Fibonacci Number
static int NthFib(int n)
{
      
// Declare an array to store 
// Fibonacci numbers.
int []f = new int[n + 2];
int i;
  
// 0th and 1st number of the
// series are 0 and 1
f[0] = 0;
f[1] = 1;
  
for (i = 2; i <= n; i++) 
{
    f[i] = f[i - 1] + f[i - 2];
}
  
return f[n];
}
  
// Function to find N-th term
// in the series
static void findNthTerm(int n)
{
// If n is even
if (n % 2 == 0) 
{
    n = n / 2;
    n = NthPrime(n);
    Console.WriteLine(n);
}
  
// If n is odd
else 
{
    n = (n / 2) + 1;
    n = NthFib(n - 1);
    Console.WriteLine(n);
}
}
  
// Driver code
public static void Main()
{
    int X = 5;
    findNthTerm(X);
  
    X = 10;
    findNthTerm(X);
}
}
  
// This code is contributed 
// by ChitraNayal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find 
// N-th term in the series
$MAX = 1000;
  
// Function to find
// Nth Prime Number
function NthPrime($n)
{
    global $MAX;
    $count = 0;
    for ($i = 2; $i <= $MAX; $i++)
    {
        $check = 0;
        for ($j = 2; 
             $j <= sqrt($i); $j++) 
        {
            if ($i % $j == 0)
            {
                $check = 1;
                break;
            }
        }
        if ($check == 0)
            $count++;
  
        if ($count == $n
        {
            return $i;
            break;
        }
    }
}
  
// Function to find
// Nth Fibonacci Number
function NthFib($n)
{
    // Declare an array to store 
    // Fibonacci numbers.
    $f = array($n + 2);
  
    // 0th and 1st number of 
    // the series are 0 and 1
    $f[0] = 0;
    $f[1] = 1;
  
    for ($i = 2; $i <= $n; $i++)
    {
        $f[$i] = $f[$i - 1] + 
                 $f[$i - 2];
    }
  
    return $f[$n];
}
  
// Function to find N-th 
// term in the series
function findNthTerm($n)
{
    // If n is even
    if ($n % 2 == 0)
    {
        $n = $n / 2;
        $n = NthPrime($n);
        echo $n . "\n";
    }
  
    // If n is odd
    else 
    {
        $n = ($n / 2) + 1;
        $n = NthFib($n - 1);
        echo $n . "\n";
    }
}
  
// Driver code
$X = 5;
findNthTerm($X);
  
$X = 10;
findNthTerm($X);
  
// This Code is contributed
// by mits
?>

chevron_right


Output:

1
11


My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Mithun Kumar, AnkitRai01, Ita_c