# Program to evaluate the expression (√X+1)^6 + (√X-1)^6

Given a number . The task is to find the value of the below expression for the given value of .

**Examples:**

Input: X = √2

Output: 198

Explanation:

= 198

Input: X = 3

Output: 4160

**Approach:** The idea is to use Binomial expression. We can take these two terms as 2 binomial expressions. By expanding these terms we can find the desired sum. Below is the expansion of the terms.

**Now put X= in EQ(1)**

Below is the implementation of above approach:

## C++

`// CPP program to evaluate the given expression ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to find the sum ` `float` `calculateSum(` `float` `n) ` `{ ` ` ` `int` `a = ` `int` `(n); ` ` ` ` ` `return` `2 * (` `pow` `(n, 6) + 15 * ` `pow` `(n, 4) ` ` ` `+ 15 * ` `pow` `(n, 2) + 1); ` `} ` ` ` `// Driver Code ` `int` `main() ` `{ ` ` ` `float` `n = 1.4142; ` ` ` ` ` `cout << ` `ceil` `(calculateSum(n)) << endl; ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to evaluate the given expression ` `import` `java.util.*; ` ` ` `class` `gfg ` `{ ` `// Function to find the sum ` `public` `static` `double` `calculateSum(` `double` `n) ` `{ ` ` ` `return` `2` `* (Math.pow(n, ` `6` `) + ` `15` `* Math.pow(n, ` `4` `) ` ` ` `+ ` `15` `* Math.pow(n, ` `2` `) + ` `1` `); ` `} ` ` ` `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` ` ` `double` `n = ` `1.4142` `; ` ` ` `System.out.println((` `int` `)Math.ceil(calculateSum(n))); ` `} ` `} ` `//This code is contributed by mits ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program to evaluate ` `# the given expression ` ` ` `import` `math ` ` ` `#Function to find the sum ` `def` `calculateSum(n): ` ` ` ` ` `a ` `=` `int` `(n) ` ` ` ` ` `return` `(` `2` `*` `(` `pow` `(n, ` `6` `) ` `+` `15` `*` `pow` `(n, ` `4` `) ` ` ` `+` `15` `*` `pow` `(n, ` `2` `) ` `+` `1` `)) ` ` ` `#Driver Code ` `if` `__name__` `=` `=` `'__main__'` `: ` ` ` `n ` `=` `1.4142` ` ` `print` `(math.ceil(calculateSum(n))) ` ` ` `# this code is contributed by ` `# Shashank_Sharma ` |

*chevron_right*

*filter_none*

## C#

`// C# program to evaluate the given expression ` `using` `System; ` `class` `gfg ` `{ ` `// Function to find the sum ` `public` `static` `double` `calculateSum(` `double` `n) ` `{ ` ` ` `return` `2 * (Math.Pow(n, 6) + 15 * Math.Pow(n, 4) ` ` ` `+ 15 * Math.Pow(n, 2) + 1); ` `} ` ` ` `// Driver Code ` `public` `static` `int` `Main() ` `{ ` ` ` `double` `n = 1.4142; ` ` ` `Console.WriteLine(Math.Ceiling(calculateSum(n))); ` ` ` `return` `0; ` `} ` `} ` `//This code is contributed by Soumik ` |

*chevron_right*

*filter_none*

## PHP

**Output:**

198

## Recommended Posts:

- Program to evaluate simple expressions
- Expression Evaluation
- Maximize the value of the given expression
- Find all possible outcomes of a given expression
- What is an Expression and What are the types of Expressions?
- Print the balanced bracket expression using given brackets
- Maximum and Minimum Values of an Algebraic Expression
- Find a permutation of 2N numbers such that the result of given expression is exactly 2K
- Deriving the expression of Fibonacci Numbers in terms of golden ratio
- Check for balanced parentheses in an expression | O(1) space | O(N^2) time complexity
- Program for n-th even number
- Program for n-th odd number
- Program to compare m^n and n^m
- Program to add two fractions
- Program to calculate value of nCr

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.