Evaluate the expression ( N1 * (N – 1)2 * … * 1N) % (109 + 7)
Given an integer N, the task is to find the value of the expression ( N1 * (N – 1)2 * … * 1N) % (109 + 7).
Input: N = 1
Output: 1
Explanation:
11 = 1Input: N = 4
Output: 288
Explanation:
41 * (4 – 1)2 * (4 – 2)3 * (4-3)4
= 4 * 9 * 8 * 1
= 288
Naive Approach: The simplest approach to solve this problem is to iterate over the range [1, N]. For every ith iteration, calculate the value of (N – i + 1)i. Finally, print the product of all the calculated values from each iteration.
Time Complexity: O(N2 * log2(N))
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized based on the following observations:
F(N) = N1 * (N – 1)2 * … * 1N
= N * (N – 1) * (N – 1) * (N – 2) * (N – 2) * (N – 2)* … 1 * 1 * 1
= N * (N – 1) * (N – 2)*… * 1 * (N -1) * (N – 2) * …* 1 * …
= N! * (N – 1)! * (N – 2)! * … * 1!
Follow the steps below to solve the problem:
- Precompute the value of the factorial from 1 to N using factorial(N) = N * factorial(N – 1).
- Iterate over the range [1, N] and find the product of all the factorials over the range [1, N] using the above observations
- Finally, print the value of the expression.
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; #define mod 1000000007 // Function to find the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). int ValOfTheExpression( int n) { // factorial[i]: Stores factorial of i int factorial[n] = { 0 }; // Base Case for factorial factorial[0] = factorial[1] = 1; // Precompute the factorial for ( int i = 2; i <= n; i++) { factorial[i] = ((factorial[i - 1] % mod) * (i % mod)) % mod; } // dp[N]: Stores the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). int dp[n] = { 0 }; dp[1] = 1; for ( int i = 2; i <= n; i++) { // Update dp[i] dp[i] = ((dp[i - 1] % mod) * (factorial[i] % mod)) % mod; } // Return the answer. return dp[n]; } // Driver Code int main() { int n = 4; // Function call cout << ValOfTheExpression(n) << "\n" ; } |
Java
// Java program to implement // the above approach class GFG { static int mod = 1000000007 ; // Function to find the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). static int ValOfTheExpression( int n) { // factorial[i]: Stores factorial of i int [] factorial = new int [n + 1 ]; // Base Case for factorial factorial[ 0 ] = factorial[ 1 ] = 1 ; // Precompute the factorial for ( int i = 2 ; i <= n; i++) { factorial[i] = ((factorial[i - 1 ] % mod) * (i % mod)) % mod; } // dp[N]: Stores the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). int [] dp = new int [n + 1 ]; dp[ 1 ] = 1 ; for ( int i = 2 ; i <= n; i++) { // Update dp[i] dp[i] = ((dp[i - 1 ] % mod) * (factorial[i] % mod)) % mod; } // Return the answer. return dp[n]; } // Driver code public static void main(String[] args) { int n = 4 ; // Function call System.out.println(ValOfTheExpression(n)); } } // This code is contributed by divyesh072019 |
Python3
# Python 3 program to implement # the above approach mod = 1000000007 # Function to find the value of the expression # ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). def ValOfTheExpression(n): global mod # factorial[i]: Stores factorial of i factorial = [ 0 for i in range (n + 1 )] # Base Case for factorial factorial[ 0 ] = 1 factorial[ 1 ] = 1 # Precompute the factorial for i in range ( 2 , n + 1 , 1 ): factorial[i] = ((factorial[i - 1 ] % mod) * (i % mod)) % mod # dp[N]: Stores the value of the expression # ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). dp = [ 0 for i in range (n + 1 )] dp[ 1 ] = 1 for i in range ( 2 , n + 1 , 1 ): # Update dp[i] dp[i] = ((dp[i - 1 ] % mod) * (factorial[i] % mod)) % mod # Return the answer. return dp[n] # Driver Code if __name__ = = '__main__' : n = 4 # Function call print (ValOfTheExpression(n)) # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# program to implement // the above approach using System; class GFG { static int mod = 1000000007; // Function to find the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). static int ValOfTheExpression( int n) { // factorial[i]: Stores factorial of i int [] factorial = new int [n + 1]; // Base Case for factorial factorial[0] = factorial[1] = 1; // Precompute the factorial for ( int i = 2; i <= n; i++) { factorial[i] = ((factorial[i - 1] % mod) * (i % mod)) % mod; } // dp[N]: Stores the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). int [] dp = new int [n + 1]; dp[1] = 1; for ( int i = 2; i <= n; i++) { // Update dp[i] dp[i] = ((dp[i - 1] % mod) * (factorial[i] % mod)) % mod; } // Return the answer. return dp[n]; } // Driver code static void Main() { int n = 4; // Function call Console.WriteLine(ValOfTheExpression(n)); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // Javascript program to implement // the above approach let mod = 1000000007; // Function to find the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). function ValOfTheExpression(n) { // factorial[i]: Stores factorial of i let factorial = new Array(n + 1); // Base Case for factorial factorial[0] = factorial[1] = 1; // Precompute the factorial for (let i = 2; i <= n; i++) { factorial[i] = ((factorial[i - 1] % mod) * (i % mod)) % mod; } // dp[N]: Stores the value of the expression // ( N^1 * (N – 1)^2 * … * 1^N) % (109 + 7). let dp = new Array(n + 1); dp[1] = 1; for (let i = 2; i <= n; i++) { // Update dp[i] dp[i] = ((dp[i - 1] % mod) * (factorial[i] % mod)) % mod; } // Return the answer. return dp[n]; } let n = 4; // Function call document.write(ValOfTheExpression(n)); </script> |
288
Time Complexity: O(N )
Auxiliary Space: O(N)
Please Login to comment...