Program for class interval arithmetic mean

Given a class interval and frequency distribution and the task is to find Arithmetic mean. In case of frequency distribution the raw data is arranged by intervals having corresponding frequencies. So if we are interested to find arithmetic mean of the data having class interval we must know the mid variable x. This variable can be calculated by using mid point of interval.

Let lower limit of interval are lower_limit[] = {1, 6, 11, 16, 21}
Upper limit of interval are upper_limit[] = {5, 10, 15, 20, 25}
and frequency freq[] = {10, 20, 30, 40, 50} are given.

Where mid(x) = (lower[i] + upper[i]) / 2;
and mean = (freq[0] * mid[0] + freq[1] * mid[1] + . . . + freq[n – 1] * mid[n – 1]) / (freq[0] + freq[1] + . . . + freq[n-1])

= 2450 / 150
= 16.3333

Examples:

Input : lower_limit[] = {1, 6, 11, 16, 21}
        upper_limit[] = {5, 10, 15, 20, 25}
        freq[] = {10, 20, 30, 40, 50}
Output : 16.3333

Input : lower_limit[] = {10, 20, 30, 40, 50}
        upper_limit[] = {19, 29, 39, 49, 59}
        freq[] = {15, 20, 30, 35, 40}
Output : 38.6429

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find class interval
// arithmetic mean.
#include <bits/stdc++.h>
using namespace std;
  
// Function to find class interval arithmetic mean.
float mean(int lower_limit[], int upper_limit[], 
                              int freq[], int n)
{
    float mid[n];
    float sum = 0, freqSum = 0;
  
    // calculate sum of frequency and sum of 
    // multiplication of interval mid value 
    // and frequency.
    for (int i = 0; i < n; i++) {
        mid[i] = (lower_limit[i] +
                  upper_limit[i]) / 2;
        sum = sum + mid[i] * freq[i];
        freqSum = freqSum + freq[i];
    }
    return sum / freqSum;
}
  
// Driver function
int main()
{
    int lower_limit[] = { 1, 6, 11, 16, 21 };
    int upper_limit[] = { 5, 10, 15, 20, 25 };
    int freq[] = { 10, 20, 30, 40, 50 };
    int n = sizeof(freq) / sizeof(freq[0]);
    cout << mean(lower_limit, upper_limit, freq, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to find
// class interval
import java.io.*;
  
class GFG {
  
    // Function to find class
    // interval arithmetic mean.
    static float mean(int lower_limit[],
        int upper_limit[], int freq[], int n)
    {
        float mid[] = new float[n];
        float sum = 0, freqSum = 0;
      
        // calculate sum of frequency and sum of 
        // multiplication of interval mid value 
        // and frequency.
        for (int i = 0; i < n; i++) {
              
            mid[i] = (lower_limit[i] +
                    upper_limit[i]) / 2;
                      
            sum = sum + mid[i] * freq[i];
            freqSum = freqSum + freq[i];
        }
          
        return sum / freqSum;
    }
    // Driver function
    public static void main (String[] args) {
      
    int lower_limit[] = { 1, 6, 11, 16, 21 };
    int upper_limit[] = { 5, 10, 15, 20, 25 };
    int freq[] = { 10, 20, 30, 40, 50 };
    int n = freq.length;
      
    mean(lower_limit, upper_limit, freq, n);
        System.out.println(mean(lower_limit,
                        upper_limit, freq, n));
    }
}
  
// This code is contributed by vt_m

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find class interval
# arithmetic mean.
  
# Function to find class interval
# arithmetic mean.
def mean(lower_limit, upper_limit, freq, n):
  
    mid = [0.0] * n
    sum = 0
    freqSum = 0
  
    # calculate sum of frequency and
    # sum of multiplication of interval
    # mid value and frequency.
    for i in range( 0, n): 
        mid[i] = ((lower_limit[i] +
                  upper_limit[i]) / 2)
                    
        sum = sum + mid[i] * freq[i]
        freqSum = freqSum + freq[i]
      
    return sum / freqSum
  
  
# Driver function
lower_limit = [ 1, 6, 11, 16, 21 ]
upper_limit = [ 5, 10, 15, 20, 25 ]
freq = [10, 20, 30, 40, 50
n = len(freq)
print(round(mean(lower_limit, upper_limit,
                             freq, n), 4))
                               
# This code is contributed by
# Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find
// class interval
using System;
  
class GFG {
  
    // Function to find class
    // interval arithmetic mean.
    static float mean(int []lower_limit,
        int []upper_limit, int []freq, int n)
    {
        float []mid = new float[n];
        float sum = 0, freqSum = 0;
      
        // calculate sum of frequency and sum of 
        // multiplication of interval mid value 
        // and frequency.
        for (int i = 0; i < n; i++) {
              
            mid[i] = (lower_limit[i] +
                    upper_limit[i]) / 2;
                      
            sum = sum + mid[i] * freq[i];
            freqSum = freqSum + freq[i];
        }
          
        return sum / freqSum;
    }
      
    // Driver function
    public static void Main () {
      
        int []lower_limit = { 1, 6, 11, 16, 21 };
        int []upper_limit = { 5, 10, 15, 20, 25 };
        int []freq = { 10, 20, 30, 40, 50 };
        int n = freq.Length;
          
        mean(lower_limit, upper_limit, freq, n);
            Console.WriteLine(mean(lower_limit,
                            upper_limit, freq, n));
    }
}
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find class interval
// arithmetic mean.
  
  
// Function to find class interval
// arithmetic mean.
function mean( $lower_limit, $upper_limit
                                $freq, $n)
{
    $mid = array();
    $sum = 0; $freqSum = 0;
  
    // calculate sum of frequency and 
    // sum of multiplication of interval
    // mid value and frequency.
    for ( $i = 0; $i <$n; $i++)
    {
        $mid[$i] = ($lower_limit[$i] +
                $upper_limit[$i]) / 2;
        $sum = $sum + $mid[$i] * $freq[$i];
        $freqSum = $freqSum + $freq[$i];
    }
      
    return $sum / $freqSum;
}
  
// Driver function
$lower_limit = array( 1, 6, 11, 16, 21 );
$upper_limit = array( 5, 10, 15, 20, 25 );
$freq = array( 10, 20, 30, 40, 50 );
$n = count($freq);
  
echo mean($lower_limit, $upper_limit,
                             $freq, $n);
  
// This code is contributed by anuj_67.
?>

chevron_right


Output:

16.3333


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Smitha Dinesh Semwal, vt_m



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.