Given an integer N denoting the number of dices, the task is to find the probability of every possible value that can be obtained by throwing N dices together.
Examples:
Input: N = 1
Output:
1: 0.17
2: 0.17
3: 0.17
4: 0.17
5: 0.17
6: 0.17
Explanation: On throwing a dice, the probability of all values from [1, 6] to appear at the top is 1/6 = 0.17
Input: N = 2
Output:
2: 0.028
3: 0.056
4: 0.083
5: 0.11
6: 0.14
7: 0.17
8: 0.14
9: 0.11
10: 0.083
11: 0.056
12: 0.028
Explanation: The possible values of the sum of the two numbers that appear at the top on throwing two dices together ranges between [2, 12].
Approach: The idea is to use Dynamic programming and DP table to store the probability of each possible value.
- Store the probabilities of all the 6 numbers that can appear on throwing 1 dice.
- Now, for N=2, the probability for all possible sums between [2, 12] is equal to the sum of the product of the respective probability of the two numbers that add up to that sum. For example,
Probability of 4 on throwing 2 dices = (Probability of 1 ) * ( Probability of 3) + (Probability of 2) * ( Probability of 2) + (Probability of 3 ) * ( Probability of 1)
Probability of Sum S = (Probability of 1) * (Probability of S – 1 using N -1 dices) + (Probability of 2) * (Probability of S – 2 using N-1 dices) + ….. + (Probability of 6) * (Probability of S – 6 using N -1 dices)
- Hence, in order to solve the problem, we need to fill dp[][] table from 2 to N using a top-down approach using the relation:
dp[i][x] = dp[1][y] + dp[i-1][z] where x = y + z and i denotes the number of dices
- Display all the probabilities stored for N as the answer.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void dicesSum( int n)
{
vector<map< int , double > > dp(n + 1);
dp[1] = { { 1, 1 / 6.0 },
{ 2, 1 / 6.0 },
{ 3, 1 / 6.0 },
{ 4, 1 / 6.0 },
{ 5, 1 / 6.0 },
{ 6, 1 / 6.0 } };
for ( int i = 2; i <= n; i++) {
for ( auto a1 : dp[i - 1]) {
for ( auto a2 : dp[1]) {
dp[i][a1.first + a2.first]
+= a1.second * a2.second;
}
}
}
for ( auto a : dp[n]) {
cout << a.first << " "
<< setprecision(2)
<< a.second
<< endl;
}
}
int main()
{
int n = 2;
dicesSum(n);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG{
static void dicesSum( int n)
{
double [][] dp = new double [n + 1 ][ 6 * n + 1 ];
for ( int i = 1 ; i <= 6 ; i++)
dp[ 1 ][i] = 1 / 6.0 ;
for ( int i = 2 ; i <= n; i++)
for ( int j = i - 1 ; j <= 6 * (i - 1 ); j++)
for ( int k = 1 ; k <= 6 ; k++)
{
dp[i][j + k] += (dp[i - 1 ][j] *
dp[ 1 ][k]);
}
for ( int i = n; i <= 6 * n; i++)
{
System.out.println(i + " " +
Math.round(dp[n][i] * 1000.0 ) /
1000.0 );
}
}
public static void main(String[] args)
{
int n = 2 ;
dicesSum(n);
}
}
|
Python3
def diceSum(n):
dp = [[ 0 for j in range (n * 6 )]
for i in range (n + 1 )]
for i in range ( 6 ):
dp[ 1 ][i] = 1 / 6
for i in range ( 2 , n + 1 ):
for j in range ( len (dp[i - 1 ])):
for k in range ( 6 ):
if (dp[i - 1 ][j] ! = 0 and
dp[i - 1 ][k] ! = 0 ):
dp[i][j + k] + = (dp[i - 1 ][j] *
dp[ 1 ][k])
for i in range ( len (dp[n]) - n + 1 ):
print ( "%d %0.3f" % (i + n, dp[n][i]))
n = 2
diceSum(n)
|
C#
using System;
class GFG {
static void dicesSum( int n)
{
double [,] dp = new double [n + 1,6 * n + 1];
for ( int i = 1; i <= 6; i++)
dp[1,i] = 1 / 6.0;
for ( int i = 2; i <= n; i++)
for ( int j = i - 1; j <= 6 * (i - 1); j++)
for ( int k = 1; k <= 6; k++)
{
dp[i,j + k] += (dp[i - 1,j] *
dp[1,k]);
}
for ( int i = n; i <= 6 * n; i++)
{
Console.WriteLine(i + " " +
Math.Round(dp[n,i] * 1000.0) /
1000.0);
}
}
static void Main() {
int n = 2;
dicesSum(n);
}
}
|
Javascript
<script>
function dicesSum(n)
{
let dp = new Array(n+1);
for ( var i = 0; i < dp.length; i++) {
dp[i] = new Array(2);
}
for ( var i = 0; i < dp.length; i++) {
for ( var j = 0; j < 6 * n + 1; j++) {
dp[i][j] = 0;
}
}
for (let i = 1; i <= 6; i++)
dp[1][i] = 1 / 6.0;
for (let i = 2; i <= n; i++)
for (let j = i - 1; j <= 6 * (i - 1); j++)
for (let k = 1; k <= 6; k++)
{
dp[i][j + k] += (dp[i - 1][j] *
dp[1][k]);
}
for (let i = n; i <= 6 * n; i++)
{
document.write(i + " " +
Math.round(dp[n][i] * 1000.0) /
1000.0 + "<br/>" );
}
}
let n = 2;
dicesSum(n);
</script>
|
Output:
2 0.028
3 0.056
4 0.083
5 0.11
6 0.14
7 0.17
8 0.14
9 0.11
10 0.083
11 0.056
12 0.028
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
24 Feb, 2022
Like Article
Save Article