# Probability of getting a sum on throwing 2 Dices N times

Given the sum. The task is to find out the probability of occurring that sum on the thrown of the two dice N times.
Probability is defined as the favorable numbers of outcomes upon total numbers of the outcome. Probability always lies between 0 and 1.
Examples:

```Input: sum = 11, times = 1
Output: 2 / 36
favorable outcomes = (5, 6) and (6, 5) i.e 2
Total outcomes = (1, 1), (1, 2), (1, 3)...(6, 6) i.e 36
Probability = (2 / 36)

Input: sum = 7, times = 7
Output: 1 / 279936```

Formula:-

The probability of occurring sum on throwing 2 dices N times = (favorable/total) ^ N

Approach:-

First of All, Calculates the probability of Occurring that sum on thrown of 2 dice 1 times.
Let say it Probability1.
Now, to calculate the Probability of occurring that sum on thrown of 2 dice N times be:
Probability2 = (Probability1) ^ N. i.e Probability1 raise to power N

Below is the implementation of above approach:

## C++

 `// C++ implementation of above approach` `#include ` `using` `namespace` `std;`   `// function that calculates Probability.` `int` `Probability(``int` `sum, ``int` `times)` `{`   `    ``float` `favorable = 0.0, total = 36.0;` `    ``long` `int` `probability = 0;`   `    ``// To calculate favorable outcomes` `    ``// in thrown of 2 dices 1 times.` `    ``for` `(``int` `i = 1; i <= 6; i++) {` `        ``for` `(``int` `j = 1; j <= 6; j++) {` `            ``if` `((i + j) == sum)` `                ``favorable++;` `        ``}` `    ``}`   `    ``int` `gcd1 = __gcd((``int``)favorable, (``int``)total);`   `    ``// Reduce to simplest Form.` `    ``favorable = favorable / (``float``)gcd1;` `    ``total = total / (``float``)gcd1;`   `    ``// Probability of occurring sum on 2 dice N times.` `    ``probability = ``pow``(total, times);`   `    ``return` `probability;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `sum = 7, times = 7;`   `    ``cout << ``"1"` `         ``<< ``"/"` `<< Probability(sum, times);` `    ``return` `0;` `}`

## Java

 `// Java implementation of above approach` `import` `java.io.*;`   `class` `GFG ` `{` `// Recursive function to return` `// gcd of a and b ` `static` `int` `__gcd(``int` `a, ``int` `b) ` `{ ` `    ``// Everything divides 0 ` `    ``if` `(a == ``0``) ` `    ``return` `b; ` `    ``if` `(b == ``0``) ` `    ``return` `a; ` `    `  `    ``// base case ` `    ``if` `(a == b) ` `        ``return` `a; ` `    `  `    ``// a is greater ` `    ``if` `(a > b) ` `        ``return` `__gcd(a - b, b); ` `    ``return` `__gcd(a, b - a); ` `}`   `// function that calculates ` `// Probability.` `static` `long` `Probability(``int` `sum,` `                        ``int` `times)` `{`   `    ``float` `favorable = ``0``, total = ``36``;` `    ``long` `probability = ``0``;`   `    ``// To calculate favorable outcomes` `    ``// in thrown of 2 dices 1 times.` `    ``for` `(``int` `i = ``1``; i <= ``6``; i++) ` `    ``{` `        ``for` `(``int` `j = ``1``; j <= ``6``; j++)` `        ``{` `            ``if` `((i + j) == sum)` `                ``favorable++;` `        ``}` `    ``}`   `    ``int` `gcd1 = __gcd((``int``)favorable, ` `                     ``(``int``)total);`   `    ``// Reduce to simplest Form.` `    ``favorable = favorable / (``float``)gcd1;` `    ``total = total / (``float``)gcd1;`   `    ``// Probability of occurring ` `    ``// sum on 2 dice N times.` `    ``probability = (``long``)Math.pow(total, times);`   `    ``return` `probability;` `}`   `// Driver Code` `public` `static` `void` `main (String[] args) ` `{` `    ``int` `sum = ``7``, times = ``7``;` `    `  `    ``System.out.println( ``"1"` `+ ``"/"` `+ ` `          ``Probability(sum, times));` `}` `}`   `// This code is contributed ` `// by inder_verma`

## Python 3

 `# Python 3 implementation of above approach`   `# from math import everything` `from` `math ``import` `*`   `# function that calculates Probability.` `def` `Probability(``sum``, times) :` `    ``favorable, total, probability ``=` `0.0``, ``36.0``, ``0`   `    ``# To calculate favorable outcomes ` `    ``# in thrown of 2 dices 1 times. ` `    ``for` `i ``in` `range``(``7``) :` `        ``for` `j ``in` `range``(``7``) :` `            ``if` `((i ``+` `j) ``=``=` `sum``) :` `                ``favorable ``+``=` `1`   `    ``gcd1 ``=` `gcd(``int``(favorable), ``int``(total))`   `    ``# Reduce to simplest Form. ` `    ``favorable ``=` `favorable ``/` `gcd1` `    ``total ``=` `total ``/` `gcd1`   `    ``# Probability of occurring sum on 2 dice N times.` `    ``probability ``=` `pow``(total, times)`   `    ``return` `int``(probability)`     `# Driver Code` `if` `__name__ ``=``=` `"__main__"` `:`   `    ``sum``, times ``=` `7``, ``7`   `    ``print``(``"1"``,``"/"``,Probability(``sum``, times))`     `# This code is contributed by ANKITRAI1`

## C#

 `// C# implementation of above approach`   `class` `GFG ` `{` `// Recursive function to return` `// gcd of a and b ` `static` `int` `__gcd(``int` `a, ``int` `b) ` `{ ` `    ``// Everything divides 0 ` `    ``if` `(a == 0) ` `    ``return` `b; ` `    ``if` `(b == 0) ` `    ``return` `a; ` `    `  `    ``// base case ` `    ``if` `(a == b) ` `        ``return` `a; ` `    `  `    ``// a is greater ` `    ``if` `(a > b) ` `        ``return` `__gcd(a - b, b); ` `    ``return` `__gcd(a, b - a); ` `}`   `// function that calculates ` `// Probability.` `static` `long` `Probability(``int` `sum,` `                        ``int` `times)` `{`   `    ``float` `favorable = 0, total = 36;` `    ``long` `probability = 0;`   `    ``// To calculate favorable outcomes` `    ``// in thrown of 2 dices 1 times.` `    ``for` `(``int` `i = 1; i <= 6; i++) ` `    ``{` `        ``for` `(``int` `j = 1; j <= 6; j++)` `        ``{` `            ``if` `((i + j) == sum)` `                ``favorable++;` `        ``}` `    ``}`   `    ``int` `gcd1 = __gcd((``int``)favorable, ` `                    ``(``int``)total);`   `    ``// Reduce to simplest Form.` `    ``favorable = favorable / (``float``)gcd1;` `    ``total = total / (``float``)gcd1;`   `    ``// Probability of occurring ` `    ``// sum on 2 dice N times.` `    ``probability = (``long``)System.Math.Pow(total, times);`   `    ``return` `probability;` `}`   `// Driver Code` `public` `static` `void` `Main() ` `{` `    ``int` `sum = 7, times = 7;` `    `  `    ``System.Console.WriteLine( ``"1"` `+ ``"/"` `+ ` `        ``Probability(sum, times));` `}` `}`   `// This code is contributed ` `// by mits`

## PHP

 ``

## Javascript

 ``

Output:

`1/279936`

Time complexity: O(logN), for using gcd and pow functions.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next