Related Articles

Related Articles

Print the nodes of the Binary Tree whose height is a Prime number
  • Last Updated : 24 Nov, 2020

Given a binary tree, our task is to print the nodes whose height is a prime number starting from the root node.

Examples:

Input:     
             1
           /   \
          2     3
         /  \
        4    5
Output: 4 5
Explanation:
For this tree: 
Height of Node 1 - 0, 
Height of Node 2 - 1, 
Height of Node 3 - 1, 
Height of Node 4 - 2, 
Height of Node 5 - 2. 
Hence, the nodes whose height
is a prime number are 4, and 5.

Input:     
             1
           /   \
          2     5
         /  \
        3    4
Output: 3 4
Explanation:
For this tree: 
Height of Node 1 - 0, 
Height of Node 2 - 1, 
Height of Node 3 - 2, 
Height of Node 4 - 2, 
Height of Node 5 - 1. 
Hence, the nodes whose height
is a prime number are 3, and 4.

Approach: To solve the problem mentioned above,

  1. We have to perform Depth First Search(DFS) on the tree and for every node, store the height of every node as we move down the tree.
  2. Iterate over the height array of each node and check if it prime or not.
  3. If yes then print the node else ignore it.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of nodes
// at prime height in the given tree
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100000
 
vector<int> graph[MAX + 1];
 
// To store Prime Numbers
vector<bool> Prime(MAX + 1, true);
 
// To store height of each node
int height[MAX + 1];
 
// Function to find the
// prime numbers till 10^5
void SieveOfEratosthenes()
{
 
    int i, j;
    Prime[0] = Prime[1] = false;
    for (i = 2; i * i <= MAX; i++) {
 
        // Traverse all multiple of i
        // and make it false
        if (Prime[i]) {
 
            for (j = 2 * i; j < MAX; j += i) {
                Prime[j] = false;
            }
        }
    }
}
 
// Function to perform dfs
void dfs(int node, int parent, int h)
{
    // Store the height of node
    height[node] = h;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node, h + 1);
    }
}
 
// Function to find the nodes
// at prime height
void primeHeightNode(int N)
{
    // To precompute prime number till 10^5
    SieveOfEratosthenes();
 
    for (int i = 1; i <= N; i++) {
        // Check if height[node] is prime
        if (Prime[height[i]]) {
            cout << i << " ";
        }
    }
}
 
// Driver code
int main()
{
    // Number of nodes
    int N = 5;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[1].push_back(3);
    graph[2].push_back(4);
    graph[2].push_back(5);
 
    dfs(1, 1, 0);
 
    primeHeightNode(N);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of nodes
// at prime height in the given tree
import java.util.*;
 
class GFG{
     
static final int MAX = 100000;
     
@SuppressWarnings("unchecked")
static Vector<Integer> []graph = new Vector[MAX + 1];
     
// To store Prime Numbers
static boolean []Prime = new boolean[MAX + 1];
     
// To store height of each node
static int []height = new int[MAX + 1];
     
// Function to find the
// prime numbers till 10^5
static void SieveOfEratosthenes()
{
    int i, j;
     
    Prime[0] = Prime[1] = false;
    for(i = 2; i * i <= MAX; i++)
    {
         
        // Traverse all multiple of i
        // and make it false
        if (Prime[i])
        {
             
            for(j = 2 * i; j < MAX; j += i)
            {
                Prime[j] = false;
            }
        }
    }
}
     
// Function to perform dfs
static void dfs(int node, int parent, int h)
{
     
    // Store the height of node
    height[node] = h;
     
    for(int to : graph[node])
    {
        if (to == parent)
            continue;
             
        dfs(to, node, h + 1);
    }
}
     
// Function to find the nodes
// at prime height
static void primeHeightNode(int N)
{
     
    // To precompute prime number till 10^5
    SieveOfEratosthenes();
     
    for(int i = 1; i <= N; i++)
    {
         
        // Check if height[node] is prime
        if (Prime[height[i]])
        {
            System.out.print(i + " ");
        }
    }
}
     
// Driver code
public static void main(String[] args)
{
     
    // Number of nodes
    int N = 5;
    for(int i = 0; i < Prime.length; i++)
        Prime[i] = true;
         
    for(int i = 0; i < graph.length; i++)
        graph[i] = new Vector<Integer>();
         
    // Edges of the tree
    graph[1].add(2);
    graph[1].add(3);
    graph[2].add(4);
    graph[2].add(5);
     
    dfs(1, 1, 0);
     
    primeHeightNode(N);
}
}
 
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of nodes
# at prime height in the given tree
MAX = 100000
 
graph = [[] for i in range(MAX + 1)]
 
# To store Prime Numbers
Prime = [True for i in range(MAX + 1)]
 
# To store height of each node
height = [0 for i in range(MAX + 1)]
 
# Function to find the
# prime numbers till 10^5
def SieveOfEratosthenes():
     
    Prime[0] = Prime[1] = False
    i = 2
     
    while i * i <= MAX:
 
        # Traverse all multiple of i
        # and make it false
        if (Prime[i]):
            for j in range(2 * i, MAX, i):
                Prime[j] = False
         
        i += 1
 
# Function to perform dfs
def dfs(node, parent, h):
 
    # Store the height of node
    height[node] = h
     
    for to in  graph[node]:
        if (to == parent):
            continue
         
        dfs(to, node, h + 1)
     
# Function to find the nodes
# at prime height
def primeHeightNode(N):
 
    # To precompute prime
    # number till 10^5
    SieveOfEratosthenes()
     
    for i in range(1, N + 1):
         
        # Check if height[node] is prime
        if (Prime[height[i]]):
            print(i, end = ' ')
 
# Driver code
if __name__=="__main__":
 
    # Number of nodes
    N = 5
     
    # Edges of the tree
    graph[1].append(2)
    graph[1].append(3)
    graph[2].append(4)
    graph[2].append(5)
 
    dfs(1, 1, 0)
 
    primeHeightNode(N)
 
# This code is contributed by rutvik_56

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of nodes
// at prime height in the given tree
using System;
using System.Collections.Generic;
class GFG{
    static readonly int MAX = 100000;
    static List<int>[] graph = new List<int>[ MAX + 1 ];
 
    // To store Prime Numbers
    static bool[] Prime = new bool[MAX + 1];
 
    // To store height of each node
    static int[] height = new int[MAX + 1];
 
    // Function to find the
    // prime numbers till 10^5
    static void SieveOfEratosthenes()
    {
        int i, j;
        Prime[0] = Prime[1] = false;
        for (i = 2; i * i <= MAX; i++)
        {
 
            // Traverse all multiple of i
            // and make it false
            if (Prime[i])
            {
                for (j = 2 * i; j < MAX; j += i)
                {
                    Prime[j] = false;
                }
            }
        }
    }
 
    // Function to perform dfs
    static void dfs(int node, int parent, int h)
    {
 
        // Store the height of node
        height[node] = h;
 
        foreach(int to in graph[node])
        {
            if (to == parent)
                continue;
            dfs(to, node, h + 1);
        }
    }
 
    // Function to find the nodes
    // at prime height
    static void primeHeightNode(int N)
    {
 
        // To precompute prime number till 10^5
        SieveOfEratosthenes();
 
        for (int i = 1; i <= N; i++)
        {
 
            // Check if height[node] is prime
            if (Prime[height[i]])
            {
                Console.Write(i + " ");
            }
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
 
        // Number of nodes
        int N = 5;
        for (int i = 0; i < Prime.Length; i++)
            Prime[i] = true;
 
        for (int i = 0; i < graph.Length; i++)
            graph[i] = new List<int>();
 
        // Edges of the tree
        graph[1].Add(2);
        graph[1].Add(3);
        graph[2].Add(4);
        graph[2].Add(5);
 
        dfs(1, 1, 0);
        primeHeightNode(N);
    }
}
 
// This code is contributed by Amit Katiyar

chevron_right


Output: 

4 5








 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :