Print odd positioned nodes of odd levels in level order of the given binary tree
Given a binary tree, the task is to print the odd positioned nodes of odd levels in the level order traversal of the tree. The root is considered at level 0, and the leftmost node of any level is considered as a node at position 0.
Example:
Input: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ 8 9 / \ 10 11 Output: 3 9 Input: 2 / \ 4 15 / / 45 17 Output: 15
Prerequisite – Even positioned elements at even level
Approach: To print nodes level by level, use level order traversal. The idea is based on Print level order traversal line by line. For that, traverse nodes level by level and switch odd level flag after every level. Similarly, mark 2nd node in every level as odd position and switch it after each time the next node is processed.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; struct Node { int data; Node *left, *right; }; // Iterative method to do level order // traversal line by line void printOddLevelOddNodes(Node* root) { // Base Case if (root == NULL) return ; // Create an empty queue for level // order traversal queue<Node*> q; // Enqueue root and initialize level as even q.push(root); bool evenLevel = true ; while (1) { // nodeCount (queue size) indicates // number of nodes in the current level int nodeCount = q.size(); if (nodeCount == 0) break ; // Mark 1st node as even positioned bool evenNodePosition = true ; // Dequeue all the nodes of current level // and Enqueue all the nodes of next level while (nodeCount > 0) { Node* node = q.front(); // Print only even positioned // nodes of even levels if (!evenLevel && !evenNodePosition) cout << node->data << " " ; q.pop(); if (node->left != NULL) q.push(node->left); if (node->right != NULL) q.push(node->right); nodeCount--; // Switch the even position flag evenNodePosition = !evenNodePosition; } // Switch the even level flag evenLevel = !evenLevel; } } // Utility method to create a node struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Driver code int main() { struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->right->left = newNode(8); root->left->right->right = newNode(9); root->left->right->left->left = newNode(10); root->left->right->right->right = newNode(11); printOddLevelOddNodes(root); return 0; } |
Java
// Java implementation of the above approach import java.util.*; class GFG { static class Node { int data; Node left, right; }; // Iterative method to do level order // traversal line by line static void printOddLevelOddNodes(Node root) { // Base Case if (root == null ) return ; // Create an empty queue for level // order traversal Queue<Node> q = new LinkedList<>(); // Enqueue root and initialize level as even q.add(root); boolean evenLevel = true ; while ( true ) { // nodeCount (queue size) indicates // number of nodes in the current level int nodeCount = q.size(); if (nodeCount == 0 ) break ; // Mark 1st node as even positioned boolean evenNodePosition = true ; // Dequeue all the nodes of current level // and Enqueue all the nodes of next level while (nodeCount > 0 ) { Node node = q.peek(); // Print only even positioned // nodes of even levels if (!evenLevel && !evenNodePosition) System.out.print(node.data + " " ); q.remove(); if (node.left != null ) q.add(node.left); if (node.right != null ) q.add(node.right); nodeCount--; // Switch the even position flag evenNodePosition = !evenNodePosition; } // Switch the even level flag evenLevel = !evenLevel; } } // Utility method to create a node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Driver code public static void main(String[] args) { Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); root.right.left = newNode( 6 ); root.right.right = newNode( 7 ); root.left.right.left = newNode( 8 ); root.left.right.right = newNode( 9 ); root.left.right.left.left = newNode( 10 ); root.left.right.right.right = newNode( 11 ); printOddLevelOddNodes(root); } } // This code is contributed by Princi Singh |
Python3
# Python implementation of the approach # Utility method to create a node class newNode: # Construct to create a new node def __init__( self , key): self .data = key self .left = None self .right = None # Iterative method to do level order # traversal line by line def printOddLevelOddNodes(root): # Base Case if (root = = None ): return # Create an empty queue for level # order traversal q = [] # Enqueue root and initialize level as even q.append(root) evenLevel = True while ( 1 ): # nodeCount (queue size) indicates # number of nodes in the current level nodeCount = len (q) if (nodeCount = = 0 ): break # Mark 1st node as even positioned evenNodePosition = True # Dequeue all the nodes of current level # and Enqueue all the nodes of next level while (nodeCount > 0 ): node = q[ 0 ] # Pronly even positioned # nodes of even levels if not evenLevel and not evenNodePosition: print (node.data, end = " " ) q.pop( 0 ) if (node.left ! = None ): q.append(node.left) if (node.right ! = None ): q.append(node.right) nodeCount - = 1 # Switch the even position flag evenNodePosition = not evenNodePosition # Switch the even level flag evenLevel = not evenLevel # Driver code if __name__ = = '__main__' : root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) root.right.left = newNode( 6 ) root.right.right = newNode( 7 ) root.left.right.left = newNode( 8 ) root.left.right.right = newNode( 9 ) root.left.right.left.left = newNode( 10 ) root.left.right.right.right = newNode( 11 ) printOddLevelOddNodes(root) |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; class GFG { public class Node { public int data; public Node left, right; }; // Iterative method to do level order // traversal line by line static void printOddLevelOddNodes(Node root) { // Base Case if (root == null ) return ; // Create an empty queue for level // order traversal Queue<Node> q = new Queue<Node>(); // Enqueue root and initialize level as even q.Enqueue(root); bool evenLevel = true ; while ( true ) { // nodeCount (queue size) indicates // number of nodes in the current level int nodeCount = q.Count; if (nodeCount == 0) break ; // Mark 1st node as even positioned bool evenNodePosition = true ; // Dequeue all the nodes of current level // and Enqueue all the nodes of next level while (nodeCount > 0) { Node node = q.Peek(); // Print only even positioned // nodes of even levels if (!evenLevel && !evenNodePosition) Console.Write(node.data + " " ); q.Dequeue(); if (node.left != null ) q.Enqueue(node.left); if (node.right != null ) q.Enqueue(node.right); nodeCount--; // Switch the even position flag evenNodePosition = !evenNodePosition; } // Switch the even level flag evenLevel = !evenLevel; } } // Utility method to create a node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Driver code public static void Main(String[] args) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); root.left.right.left = newNode(8); root.left.right.right = newNode(9); root.left.right.left.left = newNode(10); root.left.right.right.right = newNode(11); printOddLevelOddNodes(root); } } // This code is contributed by 29AjayKumar |
3 9
Recommended Posts:
- Print even positioned nodes of odd levels in level order of the given binary tree
- Print odd positioned nodes of even levels in level order of the given binary tree
- Print even positioned nodes of even levels in level order of the given binary tree
- Print extreme nodes of each level of Binary Tree in alternate order
- Recursive Program to Print extreme nodes of each level of Binary Tree in alternate order
- Print all nodes between two given levels in Binary Tree
- Print Levels of all nodes in a Binary Tree
- Print Binary Tree levels in sorted order | Set 3 (Tree given as array)
- Print Binary Tree levels in sorted order | Set 2 (Using set)
- Print Binary Tree levels in sorted order
- Print a Binary Tree in Vertical Order | Set 3 (Using Level Order Traversal)
- Print nodes between two given level numbers of a binary tree
- Print all the nodes except the leftmost node in every level of the given binary tree
- Print the nodes at odd levels of a tree
- Difference between sums of odd level and even level nodes of a Binary Tree
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.