Print Binary Tree levels in sorted order | Set 3 (Tree given as array)
Given a Complete Binary Tree as an array, the task is to print all of its levels in sorted order.
Examples:
Input: arr[] = {7, 6, 5, 4, 3, 2, 1} The given tree looks like 7 / \ 6 5 / \ / \ 4 3 2 1 Output: 7 5 6 1 2 3 4 Input: arr[] = {5, 6, 4, 9, 2, 1} The given tree looks like 5 / \ 6 4 / \ / 9 2 1 Output: 5 4 6 1 2 9
Approach: A similar problem is discussed here
As the given tree is a Complete Binary Tree:
No. of nodes at a level l will be 2l where l ≥ 0
- Start traversing the array with level initialized as 0.
- Sort the elements which are the part of the current level and print the elements.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to print all the levels // of the given tree in sorted order void printSortedLevels( int arr[], int n) { // Initialize level with 0 int level = 0; for ( int i = 0; i < n; level++) { // Number of nodes at current level int cnt = ( int ) pow (2, level); // Indexing of array starts from 0 // so subtract no. of nodes by 1 cnt -= 1; // Index of the last node in the current level int j = min(i + cnt, n - 1); // Sort the nodes of the current level sort(arr + i, arr + j + 1); // Print the sorted nodes while (i <= j) { cout << arr[i] << " " ; i++; } cout << endl; } } // Driver code int main() { int arr[] = { 5, 6, 4, 9, 2, 1 }; int n = sizeof (arr) / sizeof (arr[0]); printSortedLevels(arr, n); return 0; } |
chevron_right
filter_none
Java
// Java implementation of the approach import java.util.Arrays; class GFG { // Function to print all the levels // of the given tree in sorted order static void printSortedLevels( int arr[], int n) { // Initialize level with 0 int level = 0 ; for ( int i = 0 ; i < n; level++) { // Number of nodes at current level int cnt = ( int )Math.pow( 2 , level); // Indexing of array starts from 0 // so subtract no. of nodes by 1 cnt -= 1 ; // Index of the last node in the current level int j = Math.min(i + cnt, n - 1 ); // Sort the nodes of the current level Arrays.sort(arr, i, j+ 1 ); // Print the sorted nodes while (i <= j) { System.out.print(arr[i] + " " ); i++; } System.out.println(); } } // Driver code public static void main(String[] args) { int arr[] = { 5 , 6 , 4 , 9 , 2 , 1 }; int n = arr.length; printSortedLevels(arr, n); } } // This code is contributed by 29AjayKumar |
chevron_right
filter_none
Python3
# Python3 implementation of the approach from math import pow # Function to print all the levels # of the given tree in sorted order def printSortedLevels(arr, n): # Initialize level with 0 level = 0 i = 0 while (i < n): # Number of nodes at current level cnt = int ( pow ( 2 , level)) # Indexing of array starts from 0 # so subtract no. of nodes by 1 cnt - = 1 # Index of the last node in the current level j = min (i + cnt, n - 1 ) # Sort the nodes of the current level arr = arr[:i] + sorted (arr[i:j + 1 ]) + \ arr[j + 1 :] # Print the sorted nodes while (i < = j): print (arr[i], end = " " ) i + = 1 print () level + = 1 # Driver code arr = [ 5 , 6 , 4 , 9 , 2 , 1 ] n = len (arr) printSortedLevels(arr, n) # This code is contributed by SHUBHAMSINGH10 |
chevron_right
filter_none
C#
// C# implementation of the approach using System; using System.Linq; class GFG { // Function to print all the levels // of the given tree in sorted order static void printSortedLevels( int []arr, int n) { // Initialize level with 0 int level = 0; for ( int i = 0; i < n; level++) { // Number of nodes at current level int cnt = ( int )Math.Pow(2, level); // Indexing of array starts from 0 // so subtract no. of nodes by 1 cnt -= 1; // Index of the last node in the current level int j = Math.Min(i + cnt, n - 1); // Sort the nodes of the current level Array.Sort(arr, i, j + 1 - i); // Print the sorted nodes while (i <= j) { Console.Write(arr[i] + " " ); i++; } Console.WriteLine(); } } // Driver code public static void Main(String[] args) { int []arr = { 5, 6, 4, 9, 2, 1 }; int n = arr.Length; printSortedLevels(arr, n); } } // This code is contributed by 29AjayKumar |
chevron_right
filter_none
Output:
5 4 6 1 2 9
Recommended Posts:
- Print Binary Tree levels in sorted order | Set 2 (Using set)
- Print Binary Tree levels in sorted order
- Print odd positioned nodes of odd levels in level order of the given binary tree
- Print even positioned nodes of even levels in level order of the given binary tree
- Print odd positioned nodes of even levels in level order of the given binary tree
- Print even positioned nodes of odd levels in level order of the given binary tree
- Print Levels of all nodes in a Binary Tree
- Print all nodes between two given levels in Binary Tree
- Print a Binary Tree in Vertical Order | Set 3 (Using Level Order Traversal)
- Check if value exists in level-order sorted complete binary tree
- Print a Binary Tree in Vertical Order | Set 1
- Print a Binary Tree in Vertical Order | Set 2 (Map based Method)
- Print extreme nodes of each level of Binary Tree in alternate order
- Given level order traversal of a Binary Tree, check if the Tree is a Min-Heap
- Recursive Program to Print extreme nodes of each level of Binary Tree in alternate order
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.