Open In App
Related Articles

Print left rotation of array in O(n) time and O(1) space

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an array of size n and multiple values around which we need to left rotate the array. How to quickly print multiple left rotations?

Examples : 

Input : 
arr[] = {1, 3, 5, 7, 9}
k1 = 1
k2 = 3
k3 = 4
k4 = 6
Output :
3 5 7 9 1
7 9 1 3 5
9 1 3 5 7
3 5 7 9 1
Input :
arr[] = {1, 3, 5, 7, 9}
k1 = 14
Output :
9 1 3 5 7

We have discussed a solution in the below post. 
Quickly find multiple left rotations of an array | Set 1

Method I: The solution discussed above requires extra space. In this post, an optimized solution is discussed that doesn’t require extra space.

Implementation:

C++

// C++ implementation of left rotation of
// an array K number of times
#include <bits/stdc++.h>
using namespace std;
 
// Function to leftRotate array multiple times
void leftRotate(int arr[], int n, int k)
{
    /* To get the starting point of rotated array */
    int mod = k % n;
 
    // Prints the rotated array from start position
    for (int i = 0; i < n; i++)
        cout << (arr[(mod + i) % n]) << " ";
 
    cout << "\n";
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 3, 5, 7, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    int k = 2;
   
      // Function Call
    leftRotate(arr, n, k);
 
    k = 3;
   
      // Function Call
    leftRotate(arr, n, k);
 
    k = 4;
   
      // Function Call
    leftRotate(arr, n, k);
 
    return 0;
}

                    

C

#include <stdio.h>
 
// Function to leftRotate array multiple times
void leftRotate(int arr[], int n, int k)
{
    /* To get the starting point of rotated array */
    int mod = k % n;
 
    // Prints the rotated array from start position
    for (int i = 0; i < n; i++)
        printf("%d ", arr[(mod + i) % n]);
 
    printf("\n");
}
 
int main()
{
    int arr[] = { 1, 3, 5, 7, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    int k = 2;
 
    // Function Call
    leftRotate(arr, n, k);
 
    k = 3;
 
    // Function Call
    leftRotate(arr, n, k);
 
    k = 4;
 
    // Function Call
    leftRotate(arr, n, k);
 
    return 0;
}

                    

Java

// JAVA implementation of left rotation
// of an array K number of times
import java.util.*;
import java.lang.*;
import java.io.*;
 
class arr_rot {
    // Function to leftRotate array multiple
    // times
    static void leftRotate(int arr[], int n, int k)
    {
        /* To get the starting point of
        rotated array */
        int mod = k % n;
 
        // Prints the rotated array from
        // start position
        for (int i = 0; i < n; ++i)
            System.out.print(arr[(i + mod) % n] + " ");
 
        System.out.println();
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 3, 5, 7, 9 };
        int n = arr.length;
 
        int k = 2;
       
          // Function Call
        leftRotate(arr, n, k);
 
        k = 3;
       
          // Function Call
        leftRotate(arr, n, k);
 
        k = 4;
       
          // Function Call
        leftRotate(arr, n, k);
    }
}
 
// This code is contributed by Sanjal

                    

Python

# Python implementation of left rotation of
# an array K number of times
 
# Function to leftRotate array multiple times
 
 
def leftRotate(arr, n, k):
 
    # To get the starting point of rotated array
    mod = k % n
    s = ""
 
    # Prints the rotated array from start position
    for i in range(n):
        print str(arr[(mod + i) % n]),
    print
    return
 
 
# Driver code
arr = [1, 3, 5, 7, 9]
n = len(arr)
k = 2
 
# Function Call
leftRotate(arr, n, k)
 
k = 3
 
# Function Call
leftRotate(arr, n, k)
 
k = 4
 
# Function Call
leftRotate(arr, n, k)
 
# This code is contributed by Sachin Bisht

                    

C#

// C# implementation of left
// rotation of an array K
// number of times
using System;
 
class GFG {
 
    // Function to leftRotate
    // array multiple times
    static void leftRotate(int[] arr, int n, int k)
    {
        // To get the starting
        // point of rotated array
        int mod = k % n;
 
        // Prints the rotated array
        // from start position
        for (int i = 0; i < n; ++i)
            Console.Write(arr[(i + mod) % n] + " ");
 
        Console.WriteLine();
    }
 
    // Driver Code
    static public void Main()
    {
        int[] arr = { 1, 3, 5, 7, 9 };
        int n = arr.Length;
 
        int k = 2;
       
          // Function Call
        leftRotate(arr, n, k);
 
        k = 3;
       
          // Function Call
        leftRotate(arr, n, k);
 
        k = 4;
       
          // Function Call
        leftRotate(arr, n, k);
    }
}
 
// This code is contributed by m_kit

                    

Javascript

<script>
// JavaScript implementation of left rotation of
// an array K number of times
 
// Function to leftRotate array multiple times
function leftRotate(arr, n, k){
    /* To get the starting point of rotated array */
    let mod = k % n;
 
    // Prints the rotated array from start position
    for (let i = 0; i < n; i++)
        document.write((arr[(mod + i) % n]) + " ");
 
    document.write("\n");
}
 
// Driver Code
let arr = [ 1, 3, 5, 7, 9 ];
let n = arr.length;
 
let k = 2;
// Function Call
leftRotate(arr, n, k);
document.write("<br>");
 
k = 3;
// Function Call
leftRotate(arr, n, k);
document.write("<br>");
 
k = 4;
// Function Call
leftRotate(arr, n, k);
 
</script>

                    

PHP

<?php
// PHP implementation of
// left rotation of an
// array K number of times
 
// Function to leftRotate
// array multiple times
function leftRotate($arr, $n, $k)
{
    // To get the starting
    // point of rotated array
    $mod = $k % $n;
 
    // Prints the rotated array
    // from start position
    for ($i = 0; $i < $n; $i++)
        echo ($arr[($mod +
                    $i) % $n]) , " ";
 
    echo "\n";
}
 
// Driver Code
$arr = array(1, 3, 5, 7, 9);
$n = sizeof($arr);
 
$k = 2;
 
// Function Call
leftRotate($arr, $n, $k);
 
$k = 3;
 
// Function Call
leftRotate($arr, $n, $k);
 
$k = 4;
 
// Function Call
leftRotate($arr, $n, $k);
 
// This code is contributed by m_kit
?>

                    

Output
5 7 9 1 3 
7 9 1 3 5 
9 1 3 5 7 



Time Complexity: O(N), as we are using a loop to traverse N times.
Auxiliary Space: O(1), as we are not using any extra space.

Method II: In the below implementation we will use Standard Template Library (STL) which will be making the solution more optimize and easy to Implement.

Implementation:

C++

// C++ Implementation For Print Left Rotation Of Any Array K
// Times
 
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
// Function For The k Times Left Rotation
void leftRotate(int arr[], int k, int n)
{
 
    // Stl function rotates takes three parameters - the
    // beginning,the position by which it should be rotated
    // ,the end address of the array
      // The below function will be rotating the array left    
    // in linear time (k%arraySize) times
    rotate(arr, arr + (k % n), arr + n);
     
      // Print the rotated array from start position
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
    cout << "\n";
}
// Driver program
int main()
{
    int arr[] = { 1, 3, 5, 7, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
   
      // Function Call
    leftRotate(arr, k, n);
 
 
    return 0;
}

                    

C

#include <stdio.h>
 
// Function For k Times Left Rotation
void leftRotate(int arr[], int k, int n)
{
    int i, temp;
 
    // Perform k left rotations
    for (i = 0; i < k; i++) {
        // Store the first element of the array
        temp = arr[0];
 
        // Shift all elements one position to the left
        for (int j = 0; j < n - 1; j++) {
            arr[j] = arr[j + 1];
        }
 
        // Place the first element at the end
        arr[n - 1] = temp;
    }
 
    // Print the rotated array
    for (i = 0; i < n; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");
}
 
// Driver program
int main()
{
    int arr[] = { 1, 3, 5, 7, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
 
    // Function Call
    leftRotate(arr, k, n);
 
    return 0;
}

                    

Java

// Java implementation for print left
// rotation of any array K times
import java.io.*;
import java.util.*;
 
class GFG{
     
// Function for the k times left rotation
static void leftRotate(Integer arr[], int k,
                                      int n)
{
   
     // In Collection class rotate function
     // takes two parameters - the name of
     // array and the position by which it
     // should be rotated
     // The below function will be rotating
     // the array left  in linear time
      
     // Collections.rotate()rotate the
     // array from right hence n-k
    Collections.rotate(Arrays.asList(arr), n - k);
     
    // Print the rotated array from start position
    for(int i = 0; i < n; i++)
        System.out.print(arr[i] + " ");
}
 
// Driver code
public static void main(String[] args)
{
    Integer arr[] = { 1, 3, 5, 7, 9 };
    int n = arr.length;
    int k = 2;
     
    // Function call
    leftRotate(arr, k, n);
}
}
 
// This code is contributed by chahattekwani71

                    

Python3

# Python3 implementation to print left
# rotation of any array K times
from collections import deque
 
# Function For The k Times Left Rotation
def leftRotate(arr, k, n):
     
    # The collections module has deque class
    # which provides the rotate(), which is
    # inbuilt function to allow rotation
    arr = deque(arr)
     
    # using rotate() to left rotate by k
    arr.rotate(-k)
    arr = list(arr)
     
    # Print the rotated array from
    # start position
    for i in range(n):
        print(arr[i], end = " ")
 
# Driver Code
if __name__ == '__main__':
       
    arr = [ 1, 3, 5, 7, 9 ]
    n = len(arr)
    k = 2
   
    # Function Call
    leftRotate(arr, k, n)
 
# This code is contributed by math_lover

                    

C#

// C# program for the above approach
using System;
 
class GFG
{
    static void leftRotate(int[] arr, int d,
                           int n)
    {
        for (int i = 0; i < d; i++)
            leftRotatebyOne(arr, n);
    }
  
    static void leftRotatebyOne(int[] arr, int n)
    {
        int i, temp = arr[0];
        for (i = 0; i < n - 1; i++)
            arr[i] = arr[i + 1];
  
        arr[n - 1] = temp;
    }
  
    /* utility function to print an array */
    static void printArray(int[] arr, int size)
    {
        for (int i = 0; i < size; i++)
            Console.Write(arr[i] + " ");
    }
 
// Driver Code
public static void Main()
{
    int[] arr = { 1, 3, 5, 7, 9 };
    int n = arr.Length;
    int k = 2;
     
    // Function call
    leftRotate(arr, k, n);
    printArray(arr, n);
}
}
 
// This code is contributed by avijitmondal1998.

                    

Javascript

<script>
// Javascript program for the above approach
function leftRotate(arr, d, n)
{
    for (let i = 0; i < d; i++)
        leftRotatebyOne(arr, n);
}
  
function leftRotatebyOne(arr, n)
{
    let i, temp = arr[0];
    for (i = 0; i < n - 1; i++)
        arr[i] = arr[i + 1];
  
    arr[n - 1] = temp;
}
  
/* utility function to print an array */
function printArray(arr, size)
{
    for (let i = 0; i < size; i++)
        document.write(arr[i] + " ");
}
 
// Driver Code
let arr = [ 1, 3, 5, 7, 9 ];
let n = arr.length;
let k = 2;
     
// Function call
leftRotate(arr, k, n);
printArray(arr, n);
 
// This code is contributed by Samim Hossain Mondal.
</script>

                    

Output
5 7 9 1 3 



Note: the array itself gets updated after the rotation.

Time Complexity: O(n)
Auxiliary Space: O(1), since no extra space has been taken.

Method III(Using Reversal):

To left rotate an array by “k” units we will perform 3 simple reversals-

  • Reverse the first “k” elements
  • Reverse the last “n-k” elements where n is the size of the array
  • Reverse the whole array

Code-

C++

// C++ Implementation For Print Left Rotation Of Any Array K
// Times
 
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
// Function For The k Times Left Rotation
void leftRotate(int arr[], int k, int n)
{
      // if k>n , k%n will bring k back in range
     k = (k%n);
 
    reverse(arr,arr+k);
    reverse(arr+k,arr+n);
    reverse(arr,arr+n);
     
      // Print the rotated array from start position
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
    cout << "\n";
}
// Driver program
int main()
{
    int arr[] = { 1, 3, 5, 7, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
   
      // Function Call
    leftRotate(arr, k, n);
 
 
    return 0;
}

                    

C

#include <stdio.h>
 
// Function For k Times Left Rotation
void leftRotate(int arr[], int k, int n)
{
    // if k > n, k % n will bring k back in range
    k = (k % n);
 
    // Reverse the first part of the array (0 to k-1)
    for (int i = 0, j = k - 1; i < j; i++, j--) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
 
    // Reverse the second part of the array (k to n-1)
    for (int i = k, j = n - 1; i < j; i++, j--) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
 
    // Reverse the entire array
    for (int i = 0, j = n - 1; i < j; i++, j--) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
 
    // Print the rotated array
    for (int i = 0; i < n; i++) {
        printf("%d ", arr[i]);
    }
    printf("\n");
}
 
// Driver program
int main()
{
    int arr[] = { 1, 3, 5, 7, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
 
    // Function Call
    leftRotate(arr, k, n);
 
    return 0;
}

                    

Java

import java.util.*;
 
public class Main {
 
    // Function for k times left rotation
    public static void leftRotate(int[] arr, int k)
    {
      // if k>arr.length,k%arr.length will bring k back to range
       k%=arr.length;
        // Reverse the first k elements
        reverseArray(arr, 0, k - 1);
       
        // Reverse the remaining n-k elements
        reverseArray(arr, k, arr.length - 1);
       
        // Reverse the entire array
        reverseArray(arr, 0, arr.length - 1);
 
        // Print the rotated array from start position
        String result = Arrays.toString(arr).replaceAll("\\[|\\]|,|\\s", " ");
        System.out.println(result);
    }
 
    // Helper function to reverse a section of an array from start to end (inclusive)
    public static void reverseArray(int[] arr, int start, int end) {
        while (start < end) {
            int temp = arr[start];
            arr[start] = arr[end];
            arr[end] = temp;
            start++;
            end--;
        }
    }
 
    // Driver code
    public static void main(String[] args) {
        int[] arr = {1, 3, 5, 7, 9};
        int k = 2;
 
        // Function Call
        leftRotate(arr, k);
    }
}

                    

Python3

# Function for k times left rotation
def leftRotate(arr, k):
    # if k>len(arr) , k%=len(arr) bring k back to range
    k%len(arr)
    # Reverse the first k elements
    arr = reverseArray(arr, 0, k - 1)
    # Reverse the remaining n-k elements
    arr = reverseArray(arr, k, len(arr) - 1)
    # Reverse the entire array
    arr = reverseArray(arr, 0, len(arr) - 1)
 
    # Print the rotated array from start position
    print(" ".join(map(str,arr)))
 
# Helper function to reverse a section of an array from start to end (inclusive)
def reverseArray(arr, start, end):
    while start < end:
        temp = arr[start]
        arr[start] = arr[end]
        arr[end] = temp
        start += 1
        end -= 1
    return arr
 
# Driver code
arr = [1, 3, 5, 7, 9]
k = 2
   
# Function Call
leftRotate(arr, k)

                    

C#

// C# Implementation For Print Left Rotation Of Any Array K
// Times
using System;
using System.Collections.Generic;
 
class Program
{
   
    // Driver program
    static void Main(string[] args)
    {
        int[] arr = { 1, 3, 5, 7, 9 };
        int n = arr.Length;
        int k = 2;
        leftRotate(arr, k, n);
        Console.ReadKey();
    }
 
    // Function For The k Times Left Rotation
    static void leftRotate(int[] arr, int k, int n)
    {
        k%=n;
        Array.Reverse(arr, 0, k);
        Array.Reverse(arr, k, n - k);
        Array.Reverse(arr, 0, n);
 
        // Print the rotated array from start position
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
        Console.WriteLine();
    }
}
// This code is contributed by Tapesh(tapeshdua420)

                    

Javascript

// Function for k times left rotation
function leftRotate(arr, k) {
    k%=arr.length
    // Reverse the first k elements
    arr = reverseArray(arr, 0, k - 1);
    // Reverse the remaining n-k elements
    arr = reverseArray(arr, k, arr.length - 1);
    // Reverse the entire array
    arr = reverseArray(arr, 0, arr.length - 1);
 
    // Print the rotated array from start position
    console.log(arr.join(" "));
}
 
// Helper function to reverse a section of an array from start to end (inclusive)
function reverseArray(arr, start, end) {
    while (start < end) {
        let temp = arr[start];
        arr[start] = arr[end];
        arr[end] = temp;
        start++;
        end--;
    }
    return arr;
}
 
// Driver code
let arr = [1, 3, 5, 7, 9 ];
let n = arr.length;
let k = 2;
   
// Function Call
leftRotate(arr, k, n);

                    

Kotlin

fun leftRotate(arr: IntArray, k: Int, n: Int) {
    // If k > n, k % n will bring k back in range
    val rotation = k % n
 
    // Reverse the first part of the array (0 to rotation-1)
    for (i in 0 until rotation / 2) {
        val temp = arr[i]
        arr[i] = arr[rotation - i - 1]
        arr[rotation - i - 1] = temp
    }
 
    // Reverse the second part of the array (rotation to n-1)
    for (i in 0 until (n - rotation) / 2) {
        val temp = arr[rotation + i]
        arr[rotation + i] = arr[n - i - 1]
        arr[n - i - 1] = temp
    }
 
    // Reverse the entire array
    for (i in 0 until n / 2) {
        val temp = arr[i]
        arr[i] = arr[n - i - 1]
        arr[n - i - 1] = temp
    }
 
    // Print the rotated array
    for (i in arr) {
        print("$i ")
    }
    println()
}
 
fun main() {
    val arr = intArrayOf(1, 3, 5, 7, 9)
    val n = arr.size
    val k = 2
 
    // Function Call
    leftRotate(arr, k, n)
}
fun leftRotate(arr: IntArray, k: Int, n: Int) {
    // If k > n, k % n will bring k back in range
    val rotation = k % n
 
    // Reverse the first part of the array (0 to rotation-1)
    for (i in 0 until rotation / 2) {
        val temp = arr[i]
        arr[i] = arr[rotation - i - 1]
        arr[rotation - i - 1] = temp
    }
 
    // Reverse the second part of the array (rotation to n-1)
    for (i in 0 until (n - rotation) / 2) {
        val temp = arr[rotation + i]
        arr[rotation + i] = arr[n - i - 1]
        arr[n - i - 1] = temp
    }
 
    // Reverse the entire array
    for (i in 0 until n / 2) {
        val temp = arr[i]
        arr[i] = arr[n - i - 1]
        arr[n - i - 1] = temp
    }
 
    // Print the rotated array
    for (i in arr) {
        print("$i ")
    }
    println()
}
 
fun main() {
    val arr = intArrayOf(1, 3, 5, 7, 9)
    val n = arr.size
    val k = 2
 
    // Function Call
    leftRotate(arr, k, n)
}

                    



Output
5 7 9 1 3 



Note: the array itself gets updated after the rotation.

Time Complexity: O(n)
Auxiliary Space: O(1), since no extra space has been taken.

 



Last Updated : 14 Oct, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads