Print all triplets with given sum
Given an array of distinct elements. The task is to find triplets in array whose sum is equal to a given number.
Examples :
Input : arr[] = {0, -1, 2, -3, 1} sum = -2 Output : 0 -3 1 -1 2 -3 Input : arr[] = {1, -2, 1, 0, 5} sum = 0 Output : 1 -2 1
Method 1 (Simple : O(n3))
The naive approach is that run three loops and check one by one that sum of three elements is given sum or not If sum of three elements is given sum, then print elements other wise print not found.
C++
// A simple C++ program to find three elements // whose sum is equal to given sum #include <bits/stdc++.h> using namespace std; // Prints all triplets in arr[] with given sum void findTriplets( int arr[], int n, int sum) { for ( int i = 0; i < n - 2; i++) { for ( int j = i + 1; j < n - 1; j++) { for ( int k = j + 1; k < n; k++) { if (arr[i] + arr[j] + arr[k] == sum) { cout << arr[i] << " " << arr[j] << " " << arr[k] << endl; } } } } } // Driver code int main() { int arr[] = { 0, -1, 2, -3, 1 }; int n = sizeof (arr) / sizeof (arr[0]); findTriplets(arr, n, -2); return 0; } |
Java
// A simple Java program // to find three elements // whose sum is equal to // given sum import java.io.*; class GFG { // Prints all triplets in // arr[] with given sum static void findTriplets( int arr[], int n, int sum) { for ( int i = 0 ; i < n - 2 ; i++) { for ( int j = i + 1 ; j < n - 1 ; j++) { for ( int k = j + 1 ; k < n; k++) { if (arr[i] + arr[j] + arr[k] == sum) { System.out.println(arr[i]+ " " + arr[j] + " " + arr[k] ); } } } } } // Driver code public static void main (String[] args) { int arr[] = { 0 , - 1 , 2 , - 3 , 1 }; int n = arr.length; findTriplets(arr, n, - 2 ); } } // This code is contributed by m_kit |
Python 3
# A simple Python 3 program # to find three elements # whose sum is equal to # given sum # Prints all triplets in # arr[] with given sum def findTriplets(arr, n, sum ): for i in range ( 0 , n - 2 ): for j in range (i + 1 , n - 1 ): for k in range (j + 1 , n): if (arr[i] + arr[j] + arr[k] = = sum ): print (arr[i], " " , arr[j] , " " , arr[k] , sep = "") # Driver code arr = [ 0 , - 1 , 2 , - 3 , 1 ] n = len (arr) findTriplets(arr, n, - 2 ) # This code is contributed # by Smitha |
C#
// A simple C# program // to find three elements // whose sum is equal to // given sum using System; class GFG { // Prints all triplets in // arr[] with given sum static void findTriplets( int []arr, int n, int sum) { for ( int i = 0; i < n - 2; i++) { for ( int j = i + 1; j < n - 1; j++) { for ( int k = j + 1; k < n; k++) { if (arr[i] + arr[j] + arr[k] == sum) { Console.WriteLine(arr[i]+ " " + arr[j] + " " + arr[k] ); } } } } } // Driver code static public void Main () { int []arr = {0, -1, 2, -3, 1}; int n = arr.Length; findTriplets(arr, n, -2); } } // This code is contributed by akt_mit |
PHP
<?php // A simple PHP program to // find three elements whose // sum is equal to given sum // Prints all triplets in // arr[] with given sum function findTriplets( $arr , $n , $sum ) { for ( $i = 0; $i < $n - 2; $i ++) { for ( $j = $i + 1; $j < $n - 1; $j ++) { for ( $k = $j + 1; $k < $n ; $k ++) { if ( $arr [ $i ] + $arr [ $j ] + $arr [ $k ] == $sum ) { echo $arr [ $i ] , " " , $arr [ $j ] , " " , $arr [ $k ] , "\n" ; } } } } } // Driver code $arr = array (0, -1, 2, -3, 1); $n = sizeof( $arr ); findTriplets( $arr , $n , -2); // This code is contributed by aj_36 ?> |
0 -3 1 -1 2 -3
Time Complexity : O(n3)
Auxiliary Space : O(1)
Method 2 (Hashing : O(n2))
We iterate through every element. For every element arr[i], we find a pair with sum “-arr[i]”. This problem reduces to pairs sum and can be solved in O(n) time using hashing.
Run a loop from i=0 to n-2 Create an empty hash table Run inner loop from j=i+1 to n-1 If -(arr[i] + arr[j]) is present in hash table print arr[i], arr[j] and -(arr[i]+arr[j]) Else Insert arr[j] in hash table.
C++
// C++ program to find triplets in a given // array whose sum is equal to given sum. #include <bits/stdc++.h> using namespace std; // function to print triplets with given sum void findTriplets( int arr[], int n, int sum) { for ( int i = 0; i < n - 1; i++) { // Find all pairs with sum equals to // "sum-arr[i]" unordered_set< int > s; for ( int j = i + 1; j < n; j++) { int x = sum - (arr[i] + arr[j]); if (s.find(x) != s.end()) printf ( "%d %d %d\n" , x, arr[i], arr[j]); else s.insert(arr[j]); } } } // Driver code int main() { int arr[] = { 0, -1, 2, -3, 1 }; int sum = -2; int n = sizeof (arr) / sizeof (arr[0]); findTriplets(arr, n, sum); return 0; } |
Java
// Java program to find triplets in a given // array whose sum is equal to given sum. import java.util.*; class GFG { // function to print triplets with given sum static void findTriplets( int arr[], int n, int sum) { for ( int i = 0 ; i < n - 1 ; i++) { // Find all pairs with sum equals to // "sum-arr[i]" HashSet<Integer> s = new HashSet<>(); for ( int j = i + 1 ; j < n; j++) { int x = sum - (arr[i] + arr[j]); if (s.contains(x)) System.out.printf( "%d %d %d\n" , x, arr[i], arr[j]); else s.add(arr[j]); } } } // Driver code public static void main(String[] args) { int arr[] = { 0 , - 1 , 2 , - 3 , 1 }; int sum = - 2 ; int n = arr.length; findTriplets(arr, n, sum); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program to find triplets in a given # array whose Sum is equal to given sum. import math as mt # function to print triplets with given sum def findTriplets(arr, n, Sum ): for i in range (n - 1 ): # Find all pairs with Sum equals # to "Sum-arr[i]" s = dict () for j in range (i + 1 , n): x = Sum - (arr[i] + arr[j]) if x in s.keys(): print (x, arr[i], arr[j]) else : s[arr[j]] = 1 # Driver code arr = [ 0 , - 1 , 2 , - 3 , 1 ] Sum = - 2 n = len (arr) findTriplets(arr, n, Sum ) # This code is contributed # by mohit kumar 29 |
C#
// C# program to find triplets in a given // array whose sum is equal to given sum. using System; using System.Collections.Generic; public class GFG { // function to print triplets with given sum static void findTriplets( int []arr, int n, int sum) { for ( int i = 0; i < n - 1; i++) { // Find all pairs with sum equals to // "sum-arr[i]" HashSet< int > s = new HashSet< int >(); for ( int j = i + 1; j < n; j++) { int x = sum - (arr[i] + arr[j]); if (s.Contains(x)) Console.Write( "{0} {1} {2}\n" , x, arr[i], arr[j]); else s.Add(arr[j]); } } } // Driver code public static void Main(String[] args) { int []arr = { 0, -1, 2, -3, 1 }; int sum = -2; int n = arr.Length; findTriplets(arr, n, sum); } } // This code is contributed by Princi Singh |
-3 0 1 2 -1 -3
Time Complexity : O(n2)
Auxiliary Space : O(n)
Method 3 (Sorting : O(n2))
The above method requires extra space. We can solve in O(1) extra space. The idea is based on method 2 of this post.
1. Sort all element of array 2. Run loop from i=0 to n-2. Initialize two index variables l=i+1 and r=n-1 4. while (l < r) Check sum of arr[i], arr[l], arr[r] is given sum or not if sum is 'sum', then print the triplet and do l++ and r--. 5. If sum is less than given sum then l++ 6. If sum is greater than given sum then r-- 7. If not exist in array then print not found.
C++
// C++ program to find triplets in a given // array whose sum is given sum. #include <bits/stdc++.h> using namespace std; // function to print triplets with given sum void findTriplets( int arr[], int n, int sum) { // sort array elements sort(arr, arr + n); for ( int i = 0; i < n - 1; i++) { // initialize left and right int l = i + 1; int r = n - 1; int x = arr[i]; while (l < r) { if (x + arr[l] + arr[r] == sum) { // print elements if it's sum is given sum. printf ( "%d %d %d\n" , x, arr[l], arr[r]); l++; r--; } // If sum of three elements is less // than 'sum' then increment in left else if (x + arr[l] + arr[r] < sum) l++; // if sum is greater than given sum, then // decrement in right side else r--; } } } // Driver code int main() { int arr[] = { 0, -1, 2, -3, 1 }; int sum = -2; int n = sizeof (arr) / sizeof (arr[0]); findTriplets(arr, n, sum); return 0; } |
Java
// Java program to find triplets // in a given array whose sum // is given sum. import java.io.*; import java.util.*; class GFG { // function to print // triplets with given sum static void findTriplets( int [] arr, int n, int sum) { // sort array elements Arrays.sort(arr); for ( int i = 0 ; i < n - 1 ; i++) { // initialize left and right int l = i + 1 ; int r = n - 1 ; int x = arr[i]; while (l < r) { if (x + arr[l] + arr[r] == sum) { // print elements if it's // sum is given sum. System.out.println(x + " " + arr[l] + " " + arr[r]); l++; r--; } // If sum of three elements // is less than 'sum' then // increment in left else if (x + arr[l] + arr[r] < sum) l++; // if sum is greater than // given sum, then decrement // in right side else r--; } } } // Driver code public static void main(String args[]) { int [] arr = new int []{ 0 , - 1 , 2 , - 3 , 1 }; int sum = - 2 ; int n = arr.length; findTriplets(arr, n, sum); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
Python3
# Python3 program to find triplets in a # given array whose sum is given sum. # function to print triplets with # given sum def findTriplets(arr, n, sum ): # sort array elements arr.sort(); for i in range ( 0 , n - 1 ): # initialize left and right l = i + 1 ; r = n - 1 ; x = arr[i]; while (l < r) : if (x + arr[l] + arr[r] = = sum ) : # print elements if it's sum # is given sum. print (x, arr[l], arr[r]); l = l + 1 ; r = r - 1 ; # If sum of three elements is less # than 'sum' then increment in left elif (x + arr[l] + arr[r] < sum ): l = l + 1 ; # if sum is greater than given sum, # then decrement in right side else : r = r - 1 ; # Driver code arr = [ 0 , - 1 , 2 , - 3 , 1 ]; sum = - 2 ; n = len (arr); findTriplets(arr, n, sum ); # This code is contributed by # Shivi_Aggarwal |
C#
// C# program to find triplets // in a given array whose sum // is given sum. using System; class GFG { // function to print // triplets with given sum static void findTriplets( int [] arr, int n, int sum) { // sort array elements Array.Sort(arr); for ( int i = 0; i < n - 1; i++) { // initialize left and right int l = i + 1; int r = n - 1; int x = arr[i]; while (l < r) { if (x + arr[l] + arr[r] == sum) { // print elements if it's // sum is given sum. Console.WriteLine(x + " " + arr[l] + " " + arr[r]); l++; r--; } // If sum of three elements // is less than 'sum' then // increment in left else if (x + arr[l] + arr[r] < sum) l++; // if sum is greater than // given sum, then decrement // in right side else r--; } } } // Driver code static int Main() { int [] arr = new int []{ 0, -1, 2, -3, 1 }; int sum = -2; int n = arr.Length; findTriplets(arr, n, sum); return 0; } } // This code is contributed by rahul |
PHP
<?php // PHP program to find triplets // in a given array whose sum // is given sum. // function to print triplets // with given sum function findTriplets( $arr , $n , $sum ) { // sort array elements sort( $arr ); for ( $i = 0; $i < $n - 1; $i ++) { // initialize left and right $l = $i + 1; $r = $n - 1; $x = $arr [ $i ]; while ( $l < $r ) { if ( $x + $arr [ $l ] + $arr [ $r ] == $sum ) { // print elements if it's // sum is given sum. echo $x , " " , $arr [ $l ], " " , $arr [ $r ], "\n" ; $l ++; $r --; } // If sum of three elements // is less than 'sum' then // increment in left else if ( $x + $arr [ $l ] + $arr [ $r ] < $sum ) $l ++; // if sum is greater // than given sum, then // decrement in right side else $r --; } } } // Driver code $arr = array (0, -1, 2, -3, 1); $sum = -2; $n = sizeof( $arr ); findTriplets( $arr , $n , $sum ); // This code is contributed by ajit ?> |
-3 -1 2 -3 0 1
Time Complexity : O(n2)
Auxiliary Space : O(1)
Recommended Posts:
- Print triplets with sum less than or equal to k
- Print all triplets in sorted array that form AP
- Count the triplets such that A[i] < B[j] < C[k]
- Find all triplets with zero sum
- All unique triplets that sum up to a given value
- Maximum value of XOR among all triplets of an array
- Count triplets with sum smaller than a given value
- Number of unique triplets whose XOR is zero
- Find number of triplets in array such that a[i]>a[j]>a[k] and i<j<k
- Find triplets in an array whose AND is maximum
- Count of triplets that satisfy the given equation
- Find maximum sum of triplets in an array such than i < j < k and a[i] < a[j] < a[k]
- Count Triplets such that one of the numbers can be written as sum of the other two
- Sum of special triplets having elements from 3 arrays
- Triplets in array with absolute difference less than k
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.