Skip to content
Related Articles

Related Articles

Print all Prime Quadruplet of a number less than it

View Discussion
Improve Article
Save Article
  • Last Updated : 12 May, 2021

Given a positive integer n, print every Prime Quadruplet below n  .
Prime quadruplet: In mathematics, Prime Quadruplet is a set of four primes of the form {p, p+2, p+6, p+8 }.
Example : 
 

Input : N = 15
Output : 5  7  11  13
                           
Input : N = 20
Output :  5  7  11  13
           11 13 17  19

 

A Simple solution to generate all Prime quadruplets up to n is to traverse all positive integer ‘i’ from i=1 to n and check if i, i+2, i+6 and i+8 are primes or not.
An Efficient Solution is to use Sieve Of Eratosthenes to pre-compute all prime numbers in an array in the certain range. 
Approach
 

  1. Pre-Compute Prime numbers using Sieve Of Eratosthenes ( refer this )
  2. Traverse from i=0 to n-7 and check if i, i+2, i+6 and i+8 are also prime or not. 
  3. If yes, Then print i, i+2, i+6, i+8, 
    Otherwise increment i and check again

Below is the implementation of above idea: 
 

C++




// CPP Program to print prime quadruplet
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100000
 
bool prime[MAX];
 
// Utility function to generate prime numbers
void sieve()
{
    // Sieve Of Eratosthenes for generating
    // prime number.
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p < MAX; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print Prime quadruplet
void printPrimeQuad(int n)
{
 
    for (int i = 0; i < n - 7; i++) {
 
        if (prime[i] && prime[i + 2] && prime[i + 6]
            && prime[i + 8]) {
 
            cout << i << " " << i + 2 << " " << i + 6
                 << " " << i + 8 << "\n";
        }
    }
}
 
// Driver Code
int main()
{
    sieve();
    int n = 20;
 
    printPrimeQuad(20);
 
    return 0;
}

Java




// Java code to print prime Quarduplet in a range
import java.util.Arrays;
import java.util.Collections;
 
class GFG {
 
    static final int MAX = 1000000;
    static boolean[] prime = new boolean[MAX];
 
    // utility function to generate prime number
    public static void sieve()
    {
        // Sieve Of Eratosthenes for generating
        // prime number.
 
        // memset(prime, true, sizeof(prime));
        Arrays.fill(prime, true);
 
        for (int p = 2; p * p < MAX; p++) {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
 
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
    }
 
    // function to print prime Quadruplet
    static void printPrimeQuad(int n)
    {
        for (int i = 0; i < n - 7; i++) {
 
            if (prime[i] && prime[i + 2] && prime[i + 6]
                && prime[i + 8]) {
 
                System.out.println(i + " " + (i + 2) + " "
                                   + (i + 6) + " " + (i + 8));
            }
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 20;
 
        sieve();
 
        printPrimeQuad(n);
    }
}

Python3




# Python3 Program to print
# prime quadruplet
 
# from math lib import sqrt method
from math import sqrt
 
MAX = 100000
 
# Sieve Of Eratosthenes for generating
# prime number.
prime = [True] * MAX
 
# Utility function to generate
# prime numbers
def sieve() :
 
    for p in range(2, int(sqrt(MAX)) + 1) :
 
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p] == True :
 
            # Update all multiples of p
            for i in range(p * 2 , MAX, p) :
                prime[i] = False
                 
     
# Function to print Prime quadruplet
def printPrimeQuad(n) :
 
    for i in range(n - 7) :
         
        if ( prime[i] and prime[i + 2] and prime[i + 6]
            and prime[i + 8]) :
 
            print(i,i + 2,i + 6,i + 8)
             
         
# Driver code
if __name__ == "__main__" :
     
    sieve()
    n = 20
 
    printPrimeQuad(20)
     
# This code is contributed by
# ANKITRAI1

C#




// C# code to print prime Quarduplet in a range
 
using System;
 
class GFG {
  
     const int MAX = 1000000;
    static bool[] prime = new bool[MAX];
  
    // utility function to generate prime number
    public static void sieve()
    {
        // Sieve Of Eratosthenes for generating
        // prime number.
  
        // memset(prime, true, sizeof(prime));
        for(int i=0;i<MAX;i++) prime[i]=true;
  
        for (int p = 2; p * p < MAX; p++) {
  
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
  
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
    }
  
    // function to print prime Quadruplet
    static void printPrimeQuad(int n)
    {
        for (int i = 0; i < n - 7; i++) {
  
            if (prime[i] && prime[i + 2] && prime[i + 6]
                && prime[i + 8]) {
  
                Console.WriteLine(i + " " + (i + 2) + " "
                                   + (i + 6) + " " + (i + 8));
            }
        }
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 20;
  
        sieve();
  
        printPrimeQuad(n);
    }
}

PHP




<?php
// PHP Program to print prime quadruplet
$MAX = 100000;
 
// Sieve Of Eratosthenes for generating
// prime number.
$prime = array_fill(0, $MAX, true);
 
// Utility function to generate
// prime numbers
function sieve()
{
    global $MAX, $prime;
 
    for ($p = 2; $p * $p < $MAX; $p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if ($prime[$p] == true)
        {
 
            // Update all multiples of p
            for ($i = $p * 2; $i < $MAX; $i += $p)
                $prime[$i] = false;
        }
    }
}
 
// Function to print Prime quadruplet
function printPrimeQuad($n)
{
    global $MAX, $prime;
    for ($i = 0; $i < $n - 7; $i++)
    {
 
        if ($prime[$i] && $prime[$i + 2] &&
            $prime[$i + 6] && $prime[$i + 8])
        {
 
            echo $i . " " . ($i + 2) . " " .
                ($i + 6) . " " . ($i + 8) . "\n";
        }
    }
}
 
// Driver Code
sieve();
$n = 20;
 
printPrimeQuad(20);
 
// This code is contributed by mits
?>

Javascript




<script>
 
// Javascript Program to print prime quadruplet
 
var MAX = 100000;
 
var prime = Array(MAX).fill(true);
 
// Utility function to generate prime numbers
function sieve()
{
    // Sieve Of Eratosthenes for generating
    // prime number.
 
    for (var p = 2; p * p < MAX; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (var i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print Prime quadruplet
function printPrimeQuad(n)
{
 
    for (var i = 0; i < n - 7; i++) {
 
        if (prime[i] && prime[i + 2] && prime[i + 6]
            && prime[i + 8]) {
 
            document.write( i + " " + (i + 2) + " "
            + (i + 6) + " " + (i + 8) + "<br>");
        }
    }
}
 
// Driver Code
sieve();
var n = 20;
printPrimeQuad(20);
 
</script>

Output: 

5 7 11 13
11 13 17 19

 

See Also: 
 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!