Given a number N, the task is to print all prime numbers less than or equal to N.
Examples:
Input: 7
Output: 2, 3, 5, 7
Input: 13
Output: 2, 3, 5, 7, 11, 13
Naive Approach: Iterate from 2 to N, and check for prime. If it is a prime number, print the number.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool isPrime( int n)
{
if (n <= 1)
return false ;
for ( int i = 2; i < n; i++)
if (n % i == 0)
return false ;
return true ;
}
void printPrime( int n)
{
for ( int i = 2; i <= n; i++)
if (isPrime(i))
cout << i << " " ;
}
int main()
{
int n = 7;
printPrime(n);
}
|
C
#include <stdbool.h>
#include <stdio.h>
bool isPrime( int n)
{
if (n <= 1)
return false ;
for ( int i = 2; i < n; i++)
if (n % i == 0)
return false ;
return true ;
}
void printPrime( int n)
{
for ( int i = 2; i <= n; i++)
if (isPrime(i))
printf ( "%d " , i);
}
int main()
{
int n = 7;
printPrime(n);
}
|
Java
class GFG {
static boolean isPrime( int n)
{
if (n <= 1 )
return false ;
for ( int i = 2 ; i < n; i++)
if (n % i == 0 )
return false ;
return true ;
}
static void printPrime( int n)
{
for ( int i = 2 ; i <= n; i++) {
if (isPrime(i))
System.out.print(i + " " );
}
}
public static void main(String[] args)
{
int n = 7 ;
printPrime(n);
}
}
|
Python3
def isPrime(n):
if n < = 1 :
return False
for i in range ( 2 , n):
if n % i = = 0 :
return False
return True
def printPrime(n):
for i in range ( 2 , n + 1 ):
if isPrime(i):
print (i, end = " " )
if __name__ = = "__main__" :
n = 7
printPrime(n)
|
C#
using System;
class GFG
{
static bool isPrime( int n)
{
if (n <= 1)
return false ;
for ( int i = 2; i < n; i++)
if (n % i == 0)
return false ;
return true ;
}
static void printPrime( int n)
{
for ( int i = 2; i <= n; i++)
{
if (isPrime(i))
Console.Write(i + " " );
}
}
public static void Main()
{
int n = 7;
printPrime(n);
}
}
|
PHP
<?php
function isPrime( $n )
{
if ( $n <= 1)
return false;
for ( $i = 2; $i < $n ; $i ++)
if ( $n % $i == 0)
return false;
return true;
}
function printPrime( $n )
{
for ( $i = 2; $i <= $n ; $i ++)
{
if (isPrime( $i ))
echo $i . " " ;
}
}
$n = 7;
printPrime( $n );
?>
|
Javascript
<script>
function isPrime(n)
{
if (n <= 1)
return false ;
for (let i = 2; i < n; i++)
if (n % i == 0)
return false ;
return true ;
}
function printPrime(n)
{
for (let i = 2; i <= n; i++) {
if (isPrime(i))
document.write(i + " " );
}
}
let n = 7;
printPrime(n);
</script>
|
Output:
2 3 5 7
Time Complexity: O(N * N)
Auxiliary Space: O(1)
A better approach is based on the fact that one of the divisors must be smaller than or equal to ?n. So we check for divisibility only till ?n.
C++
#include <bits/stdc++.h>
using namespace std;
bool isPrime( int n)
{
if (n <= 1)
return false ;
if (n <= 3)
return true ;
if (n % 2 == 0 || n % 3 == 0)
return false ;
for ( int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false ;
return true ;
}
void printPrime( int n)
{
for ( int i = 2; i <= n; i++) {
if (isPrime(i))
cout << i << " " ;
}
}
int main()
{
int n = 7;
printPrime(n);
}
|
Java
import java.io.*;
class GFG
{
static boolean isPrime( int n)
{
if (n <= 1 )
return false ;
if (n <= 3 )
return true ;
if (n % 2 == 0 ||
n % 3 == 0 )
return false ;
for ( int i = 5 ;
i * i <= n; i = i + 6 )
if (n % i == 0 ||
n % (i + 2 ) == 0 )
return false ;
return true ;
}
static void printPrime( int n)
{
for ( int i = 2 ; i <= n; i++)
{
if (isPrime(i))
System.out.print(i + " " );
}
}
public static void main (String[] args)
{
int n = 7 ;
printPrime(n);
}
}
|
C#
using System;
class GFG
{
static bool isPrime( int n)
{
if (n <= 1)
return false ;
if (n <= 3)
return true ;
if (n % 2 == 0 ||
n % 3 == 0)
return false ;
for ( int i = 5;
i * i <= n; i = i + 6)
if (n % i == 0 ||
n % (i + 2) == 0)
return false ;
return true ;
}
static void printPrime( int n)
{
for ( int i = 2; i <= n; i++)
{
if (isPrime(i))
Console.Write(i + " " );
}
}
public static void Main ()
{
int n = 7;
printPrime(n);
}
}
|
Python3
def isPrime(n) :
if (n < = 1 ) :
return False
if (n < = 3 ) :
return True
if (n % 2 = = 0 or n % 3 = = 0 ) :
return False
i = 5
while (i * i < = n) :
if (n % i = = 0 or n % (i + 2 ) = = 0 ) :
return False
i = i + 6
return True
def printPrime(n):
for i in range ( 2 , n + 1 ):
if isPrime(i):
print (i, end = " " )
n = 7
printPrime(n)
|
Javascript
<script>
function isPrime(n)
{
if (n <= 1)
return false ;
if (n <= 3)
return true ;
if (n % 2 == 0 || n % 3 == 0)
return false ;
for (let i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false ;
return true ;
}
function printPrime(n)
{
for (let i = 2; i <= n; i++) {
if (isPrime(i))
document.write(i + " " );
}
}
let n = 7;
printPrime(n);
</script>
|
PHP
<?php
function isPrime( $n )
{
if ( $n <= 1)
return false;
if ( $n <= 3)
return true;
if ( $n % 2 == 0 || $n % 3 == 0)
return false;
for ( $i = 5;
$i * $i <= $n ; $i = $i + 6)
if ( $n % $i == 0 ||
$n % ( $i + 2) == 0)
return false;
return true;
}
function printPrime( $n )
{
for ( $i = 2; $i <= $n ; $i ++)
{
if (isPrime( $i ))
echo $i . " " ;
}
}
$n = 7;
printPrime( $n );
?>
|
Time Complexity: O(N3/2)
Auxiliary Space: O(1)
The best solution is to use Sieve of Eratosthenes. The time complexity is O(N * loglog(N))
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
13 Mar, 2023
Like Article
Save Article