# Print all prime numbers less than or equal to N

Given a number N, the task is to print all prime numbers less than or equal to N.
Examples:

```Input: 7
Output: 2, 3, 5, 7

Input: 13
Output: 2, 3, 5, 7, 11, 13 ```

Naive Approach: Iterate from 2 to N, and check for prime. If it is a prime number, print the number.
Below is the implementation of the above approach:

## C++

 `// C++ program to print all primes less than N ` `#include ` `using` `namespace` `std; ` ` `  `// function check whether a number is prime or not ` `bool` `isPrime(``int` `n) ` `{ ` `    ``// Corner case ` `    ``if` `(n <= 1) ` `        ``return` `false``; ` ` `  `    ``// Check from 2 to n-1 ` `    ``for` `(``int` `i = 2; i < n; i++) ` `        ``if` `(n % i == 0) ` `            ``return` `false``; ` ` `  `    ``return` `true``; ` `} ` ` `  `// Function to print primes ` `void` `printPrime(``int` `n) ` `{ ` `    ``for` `(``int` `i = 2; i <= n; i++) ` `        ``if` `(isPrime(i)) ` `            ``cout << i << ``" "``; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `n = 7; ` `    ``printPrime(n); ` `} `

## C

 `// C program to print all primes less than N ` `#include ` `#include ` ` `  `// function check whether a number is prime or not ` `bool` `isPrime(``int` `n) ` `{ ` `    ``// Corner case ` `    ``if` `(n <= 1) ` `        ``return` `false``; ` ` `  `    ``// Check from 2 to n-1 ` `    ``for` `(``int` `i = 2; i < n; i++) ` `        ``if` `(n % i == 0) ` `            ``return` `false``; ` ` `  `    ``return` `true``; ` `} ` ` `  `// Function to print primes ` `void` `printPrime(``int` `n) ` `{ ` `    ``for` `(``int` `i = 2; i <= n; i++) ` `        ``if` `(isPrime(i)) ` `            ``printf``(``"%d "``, i); ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``int` `n = 7; ` `    ``printPrime(n); ` `} ` ` `  `// This code is contributed by Sania Kumari Gupta`

## Java

 `// Java program to print ` `// all primes less than N ` `class` `GFG { ` `    ``// function check whether ` `    ``// a number is prime or not ` `    ``static` `boolean` `isPrime(``int` `n) ` `    ``{ ` `        ``// Corner case ` `        ``if` `(n <= ``1``) ` `            ``return` `false``; ` ` `  `        ``// Check from 2 to n-1 ` `        ``for` `(``int` `i = ``2``; i < n; i++) ` `            ``if` `(n % i == ``0``) ` `                ``return` `false``; ` ` `  `        ``return` `true``; ` `    ``} ` ` `  `    ``// Function to print primes ` `    ``static` `void` `printPrime(``int` `n) ` `    ``{ ` `        ``for` `(``int` `i = ``2``; i <= n; i++) { ` `            ``if` `(isPrime(i)) ` `                ``System.out.print(i + ``" "``); ` `        ``} ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `n = ``7``; ` `        ``printPrime(n); ` `    ``} ` `} ` ` `  `// This code is contributed ` `// by ChitraNayal`

## Python3

 `# Python3 program to print  ` `# all primes less than N ` ` `  `# Function to check whether  ` `# a number is prime or not . ` `def` `isPrime(n): ` `     `  `    ``# Corner case ` `    ``if` `n <``=` `1` `: ` `        ``return` `False` ` `  `    ``# check from 2 to n-1 ` `    ``for` `i ``in` `range``(``2``, n): ` `        ``if` `n ``%` `i ``=``=` `0``: ` `            ``return` `False` ` `  `    ``return` `True` ` `  `# Function to print primes ` `def` `printPrime(n): ` `    ``for` `i ``in` `range``(``2``, n ``+` `1``): ` `        ``if` `isPrime(i): ` `            ``print``(i, end ``=` `" "``) ` ` `  `# Driver code ` `if` `__name__ ``=``=` `"__main__"` `: ` `    ``n ``=` `7` `    ``# function calling ` `    ``printPrime(n) ` `     `  `# This code is contributed  ` `# by Ankit Rai `

## C#

 `// C# program to print  ` `// all primes less than N ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `// function check whether  ` `// a number is prime or not ` `static` `bool` `isPrime(``int` `n) ` `{ ` `     `  `    ``// Corner case ` `    ``if` `(n <= 1) ` `        ``return` `false``; ` `     `  `    ``// Check from 2 to n-1 ` `    ``for` `(``int` `i = 2; i < n; i++) ` `        ``if` `(n % i == 0) ` `            ``return` `false``; ` `     `  `    ``return` `true``; ` `} ` `     `  `// Function to print primes ` `static` `void` `printPrime(``int` `n) ` `{ ` `for` `(``int` `i = 2; i <= n; i++)  ` `{ ` `    ``if` `(isPrime(i)) ` `        ``Console.Write(i + ``" "``); ` `} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main()  ` `{ ` `    ``int` `n = 7; ` `    ``printPrime(n); ` `} ` `} ` ` `  `// This code is contributed  ` `// by ChitraNayal `

## PHP

 ` `

## Javascript

 ` `

Output:

`2 3 5 7`

Time Complexity: O(N * N)
Auxiliary Space: O(1)

A better approach is based on the fact that one of the divisors must be smaller than or equal to ?n. So we check for divisibility only till ?n.

## C++

 `// C++ program to print all primes ` `// less than N ` `#include ` `using` `namespace` `std; ` ` `  `// function check whether a number ` `// is prime or not ` `bool` `isPrime(``int` `n) ` `{ ` `    ``// Corner cases ` `    ``if` `(n <= 1) ` `        ``return` `false``; ` `    ``if` `(n <= 3) ` `        ``return` `true``; ` ` `  `    ``// This is checked so that we can skip ` `    ``// middle five numbers in below loop ` `    ``if` `(n % 2 == 0 || n % 3 == 0) ` `        ``return` `false``; ` ` `  `    ``for` `(``int` `i = 5; i * i <= n; i = i + 6) ` `        ``if` `(n % i == 0 || n % (i + 2) == 0) ` `            ``return` `false``; ` ` `  `    ``return` `true``; ` `} ` ` `  `// Function to print primes ` `void` `printPrime(``int` `n) ` `{ ` `    ``for` `(``int` `i = 2; i <= n; i++) { ` `        ``if` `(isPrime(i)) ` `            ``cout << i << ``" "``; ` `    ``} ` `} ` `// Driver Code ` `int` `main() ` `{ ` `    ``int` `n = 7; ` `    ``printPrime(n); ` `} `

## Java

 `// Java program to print  ` `// all primes less than N ` `import` `java.io.*; ` ` `  `class` `GFG ` `{ ` ` `  `// function check ` `// whether a number ` `// is prime or not ` `static` `boolean` `isPrime(``int` `n) ` `{ ` `    ``// Corner cases ` `    ``if` `(n <= ``1``) ` `        ``return` `false``; ` `    ``if` `(n <= ``3``) ` `        ``return` `true``; ` ` `  `    ``// This is checked so  ` `    ``// that we can skip ` `    ``// middle five numbers ` `    ``// in below loop ` `    ``if` `(n % ``2` `== ``0` `||  ` `        ``n % ``3` `== ``0``) ` `        ``return` `false``; ` ` `  `    ``for` `(``int` `i = ``5``; ` `             ``i * i <= n; i = i + ``6``) ` `        ``if` `(n % i == ``0` `|| ` `            ``n % (i + ``2``) == ``0``) ` `            ``return` `false``; ` ` `  `    ``return` `true``; ` `} ` ` `  `// Function to print primes ` `static` `void` `printPrime(``int` `n) ` `{ ` `    ``for` `(``int` `i = ``2``; i <= n; i++) ` `    ``{ ` `        ``if` `(isPrime(i)) ` `            ``System.out.print(i + ``" "``); ` `    ``} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `n = ``7``; ` `    ``printPrime(n); ` `} ` `} ` ` `  `// This code is contributed ` `// by anuj_67. `

## C#

 `// C# program to print  ` `// all primes less than N ` `using` `System; ` ` `  `class` `GFG ` `{ ` ` `  `// function check ` `// whether a number ` `// is prime or not ` `static` `bool` `isPrime(``int` `n) ` `{ ` `    ``// Corner cases ` `    ``if` `(n <= 1) ` `        ``return` `false``; ` `    ``if` `(n <= 3) ` `        ``return` `true``; ` ` `  `    ``// This is checked so  ` `    ``// that we can skip ` `    ``// middle five numbers ` `    ``// in below loop ` `    ``if` `(n % 2 == 0 ||  ` `        ``n % 3 == 0) ` `        ``return` `false``; ` ` `  `    ``for` `(``int` `i = 5; ` `             ``i * i <= n; i = i + 6) ` `        ``if` `(n % i == 0 || ` `            ``n % (i + 2) == 0) ` `            ``return` `false``; ` ` `  `    ``return` `true``; ` `} ` ` `  `// Function to print primes ` `static` `void` `printPrime(``int` `n) ` `{ ` `    ``for` `(``int` `i = 2; i <= n; i++) ` `    ``{ ` `        ``if` `(isPrime(i)) ` `            ``Console.Write(i + ``" "``); ` `    ``} ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main () ` `{ ` `    ``int` `n = 7; ` `    ``printPrime(n); ` `} ` `} ` ` `  `// This code is contributed  ` `// by ChitraNayal `

## Python3

 `# function to check if the number is  ` `# prime or not  ` `def` `isPrime(n) : ` `    ``# Corner cases ` `    ``if` `(n <``=` `1``) : ` `        ``return` `False` `    ``if` `(n <``=` `3``) : ` `        ``return` `True` `  `  `    ``# This is checked so that we can skip  ` `    ``# middle five numbers in below loop ` `    ``if` `(n ``%` `2` `=``=` `0` `or` `n ``%` `3` `=``=` `0``) : ` `        ``return` `False` `  `  `    ``i ``=` `5` `    ``while``(i ``*` `i <``=` `n) : ` `        ``if` `(n ``%` `i ``=``=` `0` `or` `n ``%` `(i ``+` `2``) ``=``=` `0``) : ` `            ``return` `False` `        ``i ``=` `i ``+` `6` `  `  `    ``return` `True`  ` `  `# print all prime numbers  ` `# less than equal to N  ` `def` `printPrime(n): ` `    ``for` `i ``in` `range``(``2``, n ``+` `1``): ` `        ``if` `isPrime(i): ` `            ``print` `(i, end ``=``" "``)  ` `  `  `n ``=` `7`             `printPrime(n)  `

## Javascript

 ` `

## PHP

 ` `

Output:

`2 3 5 7`

Time Complexity: O(N3/2)

Auxiliary Space: O(1)
The best solution is to use Sieve of Eratosthenes. The time complexity is O(N * loglog(N))

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next