Skip to content
Related Articles

Related Articles

Improve Article
Permutations of n things taken r at a time with k things together
  • Difficulty Level : Basic
  • Last Updated : 08 Mar, 2021

Given n, r and K. The task is to find the number of permutations of n  different things taken r  at a time such that k  specific things always occur together.
Examples: 
 

Input : n = 8, r = 5, k = 2
Output : 960

Input : n = 6, r = 2, k = 2
Output : 2

 

Approach: 
 

  1. A bundle of k  specific things can be put in r places in (r – k + 1) ways .
  2. k specific things in the bundle can be arranged themselves into k! ways.
  3. Now (n – k) things will be arranged in (r – k) places in $n-k_{P_r-k}$  ways.

Thus, using the fundamental principle of counting, the required number of permutations will be: 
 

Permutations = k! \times (r-k+1) \times $n-k_{P_r-k}$
 



Below is the implementation of the above approach: 
 

C++




// CPP program to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find factorial
// of a number
int factorial(int n)
{
    int fact = 1;
 
    for (int i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
int npr(int n, int r)
{
    int pnr = factorial(n) / factorial(n - r);
 
    return pnr;
}
 
// Function to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
int countPermutations(int n, int r, int k)
{
    return factorial(k) * (r - k + 1) * npr(n - k, r - k);
}
 
// Driver code
int main()
{
    int n = 8;
    int r = 5;
    int k = 2;
 
    cout << countPermutations(n, r, k);
 
    return 0;
}

Java




// Java program to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
class GFG{
// Function to find factorial
// of a number
static int factorial(int n)
{
    int fact = 1;
 
    for (int i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
static int npr(int n, int r)
{
    int pnr = factorial(n) / factorial(n - r);
 
    return pnr;
}
 
// Function to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
static int countPermutations(int n, int r, int k)
{
    return factorial(k) * (r - k + 1) * npr(n - k, r - k);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 8;
    int r = 5;
    int k = 2;
 
    System.out.println(countPermutations(n, r, k));
}
}
// this code is contributed by mits

Python3




# Python3 program to find the number of permutations of
# n different things taken r at a time
# with k things grouped together
 
# def to find factorial
# of a number
def factorial(n):
  
    fact = 1;
 
    for i in range(2,n+1):
        fact = fact * i;
 
    return fact;
  
 
# def to calculate p(n, r)
def npr(n, r):
  
    pnr = factorial(n) / factorial(n - r);
 
    return pnr;
  
 
# def to find the number of permutations of
# n different things taken r at a time
# with k things grouped together
def countPermutations(n, r, k):
  
    return int(factorial(k) * (r - k + 1) * npr(n - k, r - k));
  
 
# Driver code
n = 8;
r = 5;
k = 2;
 
print(countPermutations(n, r, k));
     
# this code is contributed by mits

C#




// C# program to find the number of
// permutations of n different things
// taken r at a time with k things
// grouped together
using System;
 
class GFG
{
     
// Function to find factorial
// of a number
static int factorial(int n)
{
    int fact = 1;
 
    for (int i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
static int npr(int n, int r)
{
    int pnr = factorial(n) /
              factorial(n - r);
 
    return pnr;
}
 
// Function to find the number of
// permutations of n different
// things taken r at a time with
// k things grouped together
static int countPermutations(int n,
                             int r, int k)
{
    return factorial(k) * (r - k + 1) *
                    npr(n - k, r - k);
}
 
// Driver code
static void Main()
{
    int n = 8;
    int r = 5;
    int k = 2;
 
    Console.WriteLine(countPermutations(n, r, k));
}
}
 
// This code is contributed by mits

PHP




<?php
// PHP program to find the number
// of permutations of n different
// things taken r at a time
// with k things grouped together
 
// Function to find factorial
// of a number
function factorial($n)
{
    $fact = 1;
 
    for ($i = 2; $i <= $n; $i++)
        $fact = $fact * $i;
 
    return $fact;
}
 
// Function to calculate p(n, r)
function npr($n, $r)
{
    $pnr = factorial($n) /
           factorial($n - $r);
 
    return $pnr;
}
 
// Function to find the number of
// permutations of n different
// things taken r at a time
// with k things grouped together
function countPermutations($n, $r, $k)
{
    return factorial($k) * ($r - $k + 1) *
                   npr($n - $k, $r - $k);
}
 
// Driver code
$n = 8;
$r = 5;
$k = 2;
 
echo countPermutations($n, $r, $k);
 
// This code is contributed by mits
?>

Javascript




<script>
 
// JavaScript program to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
// Function to find factorial
// of a number
function factorial(n)
{
    let fact = 1;
 
    for (let i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
function npr(n, r)
{
    let pnr = Math.floor(factorial(n) / factorial(n - r));
 
    return pnr;
}
 
// Function to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
function countPermutations(n, r, k)
{
    return factorial(k) * (r - k + 1) * npr(n - k, r - k);
}
 
// Driver code
    let n = 8;
    let r = 5;
    let k = 2;
 
    document.write(countPermutations(n, r, k));
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
960

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :