Skip to content
Related Articles

Related Articles

Paths with maximum number of ‘a’ from (1, 1) to (X, Y) vertically or horizontally
  • Last Updated : 16 Sep, 2019

Given a N X N matrix consisting of characters. Also given are Q queries, where each query contains a co-ordinate (X, Y). For every query, find all paths from (1, 1) to (X, Y) by either moving vertically or horizontally and take the path which has the maximum number of a in it. The task is to print the number of non-‘a’-characters along that path.

Examples:

Input: mat[][] = {{'a', 'b', 'a'}, 
                             {'a', 'c', 'd'}, 
                             {'b', 'a', 'b'}} 
            Queries: 
            X = 1, Y = 3
            X = 3, Y = 3
Output: 
1st query: 1
2nd query: 2

Query-1: There is only one path from (1, 1) to (1, 3)
i.e., "aba" and the number of characters 
which are not 'a' is 1. 
Query-2: The path which has the maximum number of 'a'
in it is "aabab", hence non 'a' 
characters are 2. 

The problem is a variant of Min-Cost path Dp problem. We need to pre-compute the DP[][] array and then the answer will be DP[X][Y], hence every query can be answered in O(1). If the index position (1, 1) character is not ‘a’, then increase the dp[1][1] value by 1. Then simply iterate for rows and columns, and do a min-cost DP considering ‘a’ as 1 and non-‘a’ character as 0. Since the DP[][] array stores the min-cost path from (1, 1) to any index (i, j), hence the query can be answered in O(1).

Below is the implementation of the above approach:

C++




// C++ program to find paths with maximum number
// of 'a' from (1, 1) to (X, Y) vertically
// or horizontally
  
#include <bits/stdc++.h>
using namespace std;
  
const int n = 3;
int dp[n][n];
  
// Function to answer queries
void answerQueries(pair<int, int> queries[], int q)
{
    // Iterate till query
    for (int i = 0; i < q; i++) {
  
        // Decrease to get 0-based indexing
        int x = queries[i].first;
        x--;
        int y = queries[i].second;
        y--;
  
        // Print answer
        cout << dp[x][y] << endl;
    }
}
  
// Function that pre-computes the dp array
void pre_compute(char a[][n])
{
    // Check fo the first character
    if (a[0][0] == 'a')
        dp[0][0] = 0;
    else
        dp[0][0] = 1;
  
    // Iterate in row and columns
    for (int row = 0; row < n; row++) {
        for (int col = 0; col < n; col++) {
            // If not first row or not first coloumn
            if (row != 0 || col != 0)
                dp[row][col] = INT_MAX;
  
            // Not first row
            if (row != 0) {
                dp[row][col] = min(dp[row][col],
                                   dp[row - 1][col]);
            }
  
            // Not first coloumn
            if (col != 0) {
                dp[row][col] = min(dp[row][col],
                                   dp[row][col - 1]);
            }
  
            // If it is not 'a' then increase by 1
            if (a[row][col] != 'a' && (row != 0 || col != 0))
                dp[row][col] += 1;
        }
    }
}
  
// Driver code
int main()
{
    // character N X N array
    char a[][3] = { { 'a', 'b', 'a' },
                    { 'a', 'c', 'd' },
                    { 'b', 'a', 'b' } };
  
    // queries
    pair<int, int> queries[] = { { 1, 3 }, { 3, 3 } };
  
    // number of queries
    int q = 2;
  
    // function call to pre-compute
    pre_compute(a);
  
    // function call to answer every query
    answerQueries(queries, q);
}


Java




// Java program to find paths with maximum number
// of 'a' from (1, 1) to (X, Y) vertically
// or horizontally
class GFG 
{
static class pair
    int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
static int n = 3;
static int [][]dp = new int[n][n];
  
// Function to answer queries
static void answerQueries(pair queries[], int q)
{
    // Iterate till query
    for (int i = 0; i < q; i++)
    {
  
        // Decrease to get 0-based indexing
        int x = queries[i].first;
        x--;
        int y = queries[i].second;
        y--;
  
        // Print answer
        System.out.println(dp[x][y]);
    }
}
  
// Function that pre-computes the dp array
static void pre_compute(char a[][])
{
    // Check fo the first character
    if (a[0][0] == 'a')
        dp[0][0] = 0;
    else
        dp[0][0] = 1;
  
    // Iterate in row and columns
    for (int row = 0; row < n; row++) 
    {
        for (int col = 0; col < n; col++) 
        {
            // If not first row or not first coloumn
            if (row != 0 || col != 0)
                dp[row][col] = Integer.MAX_VALUE;
  
            // Not first row
            if (row != 0
            {
                dp[row][col] = Math.min(dp[row][col],
                                        dp[row - 1][col]);
            }
  
            // Not first coloumn
            if (col != 0
            {
                dp[row][col] = Math.min(dp[row][col],
                                        dp[row][col - 1]);
            }
  
            // If it is not 'a' then increase by 1
            if (a[row][col] != 'a' && (row != 0 || col != 0))
                dp[row][col] += 1;
        }
    }
}
  
// Driver code
public static void main(String[] args)
{
    // character N X N array
    char a[][] = {{ 'a', 'b', 'a' },
                  { 'a', 'c', 'd' },
                  { 'b', 'a', 'b' }};
  
    // queries
    pair queries[] = { new pair( 1, 3 ), 
                       new pair(3, 3 ) };
  
    // number of queries
    int q = 2;
  
    // function call to pre-compute
    pre_compute(a);
  
    // function call to answer every query
    answerQueries(queries, q);
}
}
  
// This code is contributed by 29AjayKumar


C#




// C# program to find paths with maximum number
// of 'a' from (1, 1) to (X, Y) vertically
// or horizontally
using System;
  
class GFG 
{
class pair
    public int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
  
static int n = 3;
static int [,]dp = new int[n, n];
  
// Function to answer queries
static void answerQueries(pair []queries, int q)
{
    // Iterate till query
    for (int i = 0; i < q; i++)
    {
  
        // Decrease to get 0-based indexing
        int x = queries[i].first;
        x--;
        int y = queries[i].second;
        y--;
  
        // Print answer
        Console.WriteLine(dp[x, y]);
    }
}
  
// Function that pre-computes the dp array
static void pre_compute(char [,]a)
{
    // Check fo the first character
    if (a[0, 0] == 'a')
        dp[0, 0] = 0;
    else
        dp[0, 0] = 1;
  
    // Iterate in row and columns
    for (int row = 0; row < n; row++) 
    {
        for (int col = 0; col < n; col++) 
        {
            // If not first row or not first coloumn
            if (row != 0 || col != 0)
                dp[row, col] = int.MaxValue;
  
            // Not first row
            if (row != 0) 
            {
                dp[row, col] = Math.Min(dp[row, col],
                                        dp[row - 1, col]);
            }
  
            // Not first coloumn
            if (col != 0) 
            {
                dp[row, col] = Math.Min(dp[row, col],
                                        dp[row, col - 1]);
            }
  
            // If it is not 'a' then increase by 1
            if (a[row, col] != 'a' && 
               (row != 0 || col != 0))
                dp[row, col] += 1;
        }
    }
}
  
// Driver code
public static void Main(String[] args)
{
    // character N X N array
    char [,]a = {{ 'a', 'b', 'a' },
                 { 'a', 'c', 'd' },
                 { 'b', 'a', 'b' }};
  
    // queries
    pair []queries = { new pair(1, 3), 
                       new pair(3, 3) };
  
    // number of queries
    int q = 2;
  
    // function call to pre-compute
    pre_compute(a);
  
    // function call to answer every query
    answerQueries(queries, q);
}
}
  
// This code is contributed by PrinciRaj1992 


Output:

1
2

Time Complexity: O(N2) for pre-computation and O(1) for each query.
Auxiliary Space: O(N2)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :