Let us see how to remove special characters like #, @, &, etc. from column names in the pandas data frame. Here we will use replace function for removing special character.
Example 1: remove a special character from column names
Python
# import pandas import pandas as pd # create data frame Data = { 'Name#' : [ 'Mukul' , 'Rohan' , 'Mayank' , 'Shubham' , 'Aakash' ], 'Location' : [ 'Saharanpur' , 'Meerut' , 'Agra' , 'Saharanpur' , 'Meerut' ], 'Pay' : [ 25000 , 30000 , 35000 , 40000 , 45000 ]} df = pd.DataFrame(Data) # print original data frame print (df) # remove special character df.columns = df.columns. str .replace( '[#,@,&]' , '') # print file after removing special character print ( "\n\n" , df) |
Output:
Here, we have successfully remove a special character from the column names. Now we will use a list with replace function for removing multiple special characters from our column names.
Example 2: remove multiple special characters from the pandas data frame
Python
# import pandas import pandas as pd # create data frame Data = { 'Name#' : [ 'Mukul' , 'Rohan' , 'Mayank' , 'Shubham' , 'Aakash' ], 'Location@' : [ 'Saharanpur' , 'Meerut' , 'Agra' , 'Saharanpur' , 'Meerut' ], 'Pay&' : [ 25000 , 30000 , 35000 , 40000 , 45000 ]} df = pd.DataFrame(Data) # print original data frame print (df) # remove special character df.columns = df.columns. str .replace( '[#,@,&]' ,'') # print file after removing special character print ( "\n\n" , df) |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.