Open In App
Related Articles

Pandas remove rows with special characters

Improve Article
Improve
Save Article
Save
Like Article
Like

In this article we will learn how to remove the rows with special characters i.e; if a row contains any value which contains special characters like @, %, &, $, #, +, -, *, /, etc. then drop such row and modify the data. To drop such types of rows, first, we have to search rows having special characters per column and then drop. To search we use regular expression either [@#&$%+-/*] or [^0-9a-zA-Z]. Let’s discuss the whole procedure with some examples :

Example 1:

This example consists of some parts with code and the dataframe used can be download by clicking data1.csv or shown below.

Python3




# importing package
import pandas as pd
 
# load dataset
df = pd.read_csv("data1.csv")
 
# view dataset
print(df)

Output:

 Select rows with columns having special characters value

Python3




# select the rows
# if Name column
# has special characters
print(df[df.Name.str.contains(r'[@#&$%+-/*]')])

 
 Output:
 

Python3




# select the rows
# if Grade column
# has special characters
print(df[df.Grade.str.contains(r'[^0-9a-zA-Z]')])

 
Output:

 Merging of selected rows

Python3




# merge the selected rows
# by using or
print(df[df.Name.str.contains(r'[^0-9a-zA-Z]')
         | df.Grade.str.contains(r'[@#&$%+-/*]')])

Output:

Remove the merged selected rows 

Python3




# drop the merged selected rows
print(df.drop(df[df.Name.str.contains(r'[^0-9a-zA-Z]')
                 | df.Grade.str.contains(r'[^0-9a-zA-Z]')].index))

Output:

Example 2: This example uses a dataframe which can be download by clicking data2.csv or  shown below :

Python3




# importing package
import pandas as pd
 
# load dataset
df = pd.read_csv("data2.csv")
 
# view dataset
print(df)
 
# select and then merge rows
# with special characters
print(df[df.ID.str.contains(r'[^0-9a-zA-Z]') |
         df.Name.str.contains(r'[^0-9a-zA-Z]') |
         df.Age.str.contains(r'[^0-9a-zA-Z]') |
         df.Country.str.contains(r'[^0-9a-zA-Z]')])
 
# drop the rows
print(df.drop(df[df.ID.str.contains(r'[^0-9a-zA-Z]') |
                 df.Name.str.contains(r'[^0-9a-zA-Z]') |
                 df.Age.str.contains(r'[^0-9a-zA-Z]') |
                 df.Country.str.contains(r'[^0-9a-zA-Z]')].index))

Output :


Last Updated : 19 Oct, 2020
Like Article
Save Article
Similar Reads
Related Tutorials