Open In App
Related Articles

Octahedral Number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number n, the task is to find n-th octahedral number. 
An octahedral number belongs to a figurate number and it is the number of spheres in an octahedron built from closely packed spheres. First, a few octahedral numbers (where n = 0, 1, 2, 3…….) are 0, 1, 6, 19, and so on.

Examples : 

Input:
Output: 44

Input:
Output: 344 

Formula for nth octahedral number: 

n * (2n2+1) / 3

C++




// C++ program to find nth
// octahedral number
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// octahedral number
int octahedral_num(int n)
{
    // Formula to calculate nth
    // octahedral number
    return n * (2 * n * n + 1) / 3;
}
 
// Drivers code
int main()
{
    int n = 5;
 
    // print result
    cout << n << "th Octahedral number: ";
    cout << octahedral_num(n);
    return 0;
}


Java




// Java program to find nth octahedral
// number
import java.io.*;
 
class GFG {
 
    // Function to find octahedral number
    static int octahedral_num(int n)
    {
 
        // Formula to calculate nth
        // octahedral number
        // and return it into main function.
        return n * (2 * n * n + 1) / 3;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 5;
        // print result
        System.out.print(n + "th Octahedral"
                         + " number: ");
        System.out.println(octahedral_num(n));
    }
}


Python3




# Python 3 program to find nth
# octahedral number
 
# Function to find
# octahedral number
def octahedral_num(n) :
     
    # Formula to calculate nth
    # octahedral number
    return n * (2 * n * n + 1) // 3
 
# Driver Code
if __name__ == '__main__' :
         
    n = 5
    print(n,"th Octahedral number: "
                , octahedral_num(n))
 
# This code is contributed ajit.


C#




// C# program to find nth
// Octahedral number
using System;
 
class GFG
{
     
    // Function to find
    // octahedral number
    static int octahedral_num(int n)
    {
 
        // Formula to calculate
        // nth octahedral number
        // and return it into
        // main function.
        return n * (2 * n *
                    n + 1) / 3;
    }
 
    // Driver Code
    static public void Main ()
    {
        int n = 5;
         
        // print result
        Console.Write(n + "th Octahedral"
                        + " number: ");
        Console.WriteLine(octahedral_num(n));
    }
}
 
// This code is Contributed by m_kit


PHP




<?php
// PHP program to find nth
// octahedral number
  
  
// Function to find
// octahedral number
function octahedral_num( $n)
{
    // Formula to calculate nth
    // octahedral number
    // and return it into main function.
    return $n * (2 * $n * $n + 1) / 3;
}
  
// Drivers Code
$n = 5;
  
// print result
echo $n, "th Octahedral number: ";
echo octahedral_num($n);
  
?>


Javascript




<script>
 
// JavaScript program to find nth
// octahedral number
 
 
// Function to find
// octahedral number
function octahedral_num( n)
{
    // Formula to calculate nth
    // octahedral number
    // and return it into main function.
    return n * (2 * n * n + 1) / 3;
}
 
// Drivers Code
let n = 5;
 
// print result
document.write( n+ "th Octahedral number: ");
document.write(octahedral_num(n));
 
// This code is contributed by Bobby
 
</script>


Output

5th Octahedral number: 85

Time Complexity: O(1) because constant operations are being performed
Auxiliary Space: O(1)

Reference: https://en.wikipedia.org/wiki/Octahedral_number


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 16 Dec, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials