# Number of Binary Search Trees of height H consisting of H+1 nodes

Given a positive integer H, the task is to find the number of possible Binary Search Trees of height H consisting of the first (H + 1) natural numbers as the node values. Since the count can be very large, print it to modulo 109 + 7.

Examples:

Input: H = 2
Output: 4
Explanation: All possible BSTs of height 2 consisting of 3 nodes are as follows:

Therefore, the total number of BSTs possible is 4.

Input: H = 6
Output: 64

Approach: The given problem can be solved based on the following observations:

• Only (H + 1) nodes are can be used to form a Binary Tree of height H.
• Except for the root node, every node has two possibilities, i.e. either to be the left child or to be the right child.
• Considering T(H) to be the number of BST of height H, where T(0) = 1 and T(H) = 2 * T(H – 1).
• Solving the above recurrence relation, the value of T(H) is 2H.

Therefore, from the above observations, print the value of 2H as the total number of BSTs of height H consisting of the first (H + 1) natural numbers.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ``using` `namespace` `std;` `const` `int` `mod = 1000000007;` `// Function to calculate x^y``// modulo 1000000007 in O(log y)``int` `power(``long` `long` `x, unsigned ``int` `y)``{``    ``// Stores the value of x^y``    ``int` `res = 1;` `    ``// Update x if it exceeds mod``    ``x = x % mod;` `    ``// If x is divisible by mod``    ``if` `(x == 0)``        ``return` `0;` `    ``while` `(y > 0) {` `        ``// If y is odd, then``        ``// multiply x with result``        ``if` `(y & 1)``            ``res = (res * x) % mod;` `        ``// Divide y by 2``        ``y = y >> 1;` `        ``// Update the value of x``        ``x = (x * x) % mod;``    ``}` `    ``// Return the value of x^y``    ``return` `res;``}` `// Function to count the number of``// of BSTs of height H consisting``// of (H + 1) nodes``int` `CountBST(``int` `H)``{` `    ``return` `power(2, H);``}` `// Driver Code``int` `main()``{``    ``int` `H = 2;``    ``cout << CountBST(H);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``class` `GFG{``    ` `static` `int` `mod = ``1000000007``;` `// Function to calculate x^y``// modulo 1000000007 in O(log y)``static` `long` `power(``long` `x, ``int` `y)``{``    ` `    ``// Stores the value of x^y``    ``long` `res = ``1``;` `    ``// Update x if it exceeds mod``    ``x = x % mod;` `    ``// If x is divisible by mod``    ``if` `(x == ``0``)``        ``return` `0``;` `    ``while` `(y > ``0``) ``    ``{``        ` `        ``// If y is odd, then``        ``// multiply x with result``        ``if` `((y & ``1``) == ``1``)``            ``res = (res * x) % mod;` `        ``// Divide y by 2``        ``y = y >> ``1``;` `        ``// Update the value of x``        ``x = (x * x) % mod;``    ``}` `    ``// Return the value of x^y``    ``return` `res;``}` `// Function to count the number of``// of BSTs of height H consisting``// of (H + 1) nodes``static` `long` `CountBST(``int` `H) ``{ ``    ``return` `power(``2``, H); ``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `H = ``2``;``    ` `    ``System.out.print(CountBST(H));``}``}` `// This code is contributed by abhinavjain194`

## Python3

 `# Python3 program for the above approach` `# Function to calculate x^y``# modulo 1000000007 in O(log y)``def` `power(x, y):``    ` `    ``mod ``=` `1000000007``    ` `    ``# Stores the value of x^y``    ``res ``=` `1` `    ``# Update x if it exceeds mod``    ``x ``=` `x ``%` `mod` `    ``# If x is divisible by mod``    ``if` `(x ``=``=` `0``):``        ``return` `0``        ` `    ``while` `(y > ``0``):``        ` `        ``# If y is odd, then``        ``# multiply x with result``        ``if` `(y & ``1``):``            ``res ``=` `(res ``*` `x) ``%` `mod` `        ``# Divide y by 2``        ``y ``=` `y >> ``1` `        ``# Update the value of x``        ``x ``=` `(x ``*` `x) ``%` `mod``    ` `    ``# Return the value of x^y``    ``return` `res` `# Function to count the number of``# of BSTs of height H consisting``# of (H + 1) nodes``def` `CountBST(H):``    ` `    ``return` `power(``2``, H)` `# Driver Code``H ``=` `2` `print``(CountBST(H))` `# This code is contributed by rohitsingh07052`

## C#

 `// C# program for the above approach ``using` `System;` `class` `GFG{``    ` `static` `int` `mod = 1000000007;` `// Function to calculate x^y``// modulo 1000000007 in O(log y)``static` `long` `power(``long` `x, ``int` `y)``{``    ` `    ``// Stores the value of x^y``    ``long` `res = 1;` `    ``// Update x if it exceeds mod``    ``x = x % mod;` `    ``// If x is divisible by mod``    ``if` `(x == 0)``        ``return` `0;` `    ``while` `(y > 0) ``    ``{``        ` `        ``// If y is odd, then``        ``// multiply x with result``        ``if` `((y & 1) == 1)``            ``res = (res * x) % mod;` `        ``// Divide y by 2``        ``y = y >> 1;` `        ``// Update the value of x``        ``x = (x * x) % mod;``    ``}` `    ``// Return the value of x^y``    ``return` `res;``}` `// Function to count the number of``// of BSTs of height H consisting``// of (H + 1) nodes``static` `long` `CountBST(``int` `H)``{``    ` `    ``return` `power(2, H);``}` `// Driver code``static` `void` `Main()``{``    ``int` `H = 2;``    ` `    ``Console.Write(CountBST(H));``}``}` `// This code is contributed by abhinavjain194`

## Javascript

 ``

Output:
`4`

Time Complexity: O(log2H)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next