Related Articles
Multiplicative Congruence method for generating Pseudo Random Numbers
• Last Updated : 12 May, 2021

Multiplicative Congruential Method (Lehmer Method) is a type of linear congruential generator for generating pseudorandom numbers in a specific range. This method can be defined as:

where,
X, the sequence of pseudo-random numbers
m ( > 0), the modulus
a (0, m), the multiplier
X0 [0, m), initial value of the sequence – termed as seed

m, a, and X0 should be chosen appropriately to get a period almost equal to m.

Approach:

• Choose the seed value ( X0 ), modulus parameter ( m ), and multiplier term ( a ).
• Initialize the required amount of random numbers to generate (say, an integer variable noOfRandomNums).
• Define storage to keep the generated random numbers (here, the vector is considered) of size noOfRandomNums.
• Initialize the 0th index of the vector with the seed value.
• For the rest of the indexes follow the Multiplicative Congruential Method to generate the random numbers.

randomNums[i] = (randomNums[i – 1] * a) % m

Finally, return the random numbers.
Below is the implementation of the above approach:

## C++

 // C++ implementation of the// above approach#include using namespace std; // Function to generate random numbersvoid multiplicativeCongruentialMethod(    int Xo, int m, int a,    vector<int>& randomNums,    int noOfRandomNums){     // Initialize the seed state    randomNums[0] = Xo;     // Traverse to generate required    // numbers of random numbers    for (int i = 1; i < noOfRandomNums; i++) {         // Follow the multiplicative        // congruential method        randomNums[i]            = (randomNums[i - 1] * a) % m;    }} // Driver Codeint main(){    int Xo = 3; // seed value    int m = 15; // modulus parameter    int a = 7; // multiplier term     // Number of Random numbers    // to be generated    int noOfRandomNums = 10;     // To store random numbers    vector<int> randomNums(noOfRandomNums);     // Function Call    multiplicativeCongruentialMethod(        Xo, m, a, randomNums,        noOfRandomNums);     // Print the generated random numbers    for (int i = 0; i < noOfRandomNums; i++) {        cout << randomNums[i] << " ";    }    return 0;}

## Java

 // Java implementation of the above approachimport java.util.*; class GFG{ // Function to generate random numbersstatic void multiplicativeCongruentialMethod(    int Xo, int m, int a,    int[] randomNums,    int noOfRandomNums){         // Initialize the seed state    randomNums[0] = Xo;         // Traverse to generate required    // numbers of random numbers    for(int i = 1; i < noOfRandomNums; i++)    {                 // Follow the multiplicative        // congruential method        randomNums[i] = (randomNums[i - 1] * a) % m;    }} // Driver codepublic static void main(String[] args){         // Seed value    int Xo = 3;         // Modulus parameter    int m = 15;         // Multiplier term    int a = 7;         // Number of Random numbers    // to be generated    int noOfRandomNums = 10;         // To store random numbers    int[] randomNums = new int[noOfRandomNums];         // Function Call    multiplicativeCongruentialMethod(Xo, m, a,                                     randomNums,                                     noOfRandomNums);         // Print the generated random numbers    for(int i = 0; i < noOfRandomNums; i++)    {        System.out.print(randomNums[i] + " ");    }}} // This code is contributed by offbeat

## Python3

 # Python3 implementation of the# above approach # Function to generate random numbersdef multiplicativeCongruentialMethod(Xo, m, a,                                     randomNums,                                     noOfRandomNums):     # Initialize the seed state    randomNums[0] = Xo     # Traverse to generate required    # numbers of random numbers    for i in range(1, noOfRandomNums):                 # Follow the linear congruential method        randomNums[i] = (randomNums[i - 1] * a) % m # Driver Codeif __name__ == '__main__':         # Seed value    Xo = 3         # Modulus parameter    m = 15         # Multiplier term    a = 7     # Number of Random numbers    # to be generated    noOfRandomNums = 10     # To store random numbers    randomNums = [0] * (noOfRandomNums)     # Function Call    multiplicativeCongruentialMethod(Xo, m, a,                                     randomNums,                                     noOfRandomNums)     # Print the generated random numbers    for i in randomNums:        print(i, end = " ") # This code is contributed by mohit kumar 29

## C#

 // C# implementation of the above approachusing System; class GFG{ // Function to generate random numbersstatic void multiplicativeCongruentialMethod(    int Xo, int m, int a,    int[] randomNums,    int noOfRandomNums){         // Initialize the seed state    randomNums[0] = Xo;         // Traverse to generate required    // numbers of random numbers    for(int i = 1; i < noOfRandomNums; i++)    {                 // Follow the multiplicative        // congruential method        randomNums[i] = (randomNums[i - 1] * a) % m;    }} // Driver codepublic static void Main(String[] args){         // Seed value    int Xo = 3;         // Modulus parameter    int m = 15;         // Multiplier term    int a = 7;         // Number of Random numbers    // to be generated    int noOfRandomNums = 10;         // To store random numbers    int[] randomNums = new int[noOfRandomNums];         // Function call    multiplicativeCongruentialMethod(Xo, m, a,                                     randomNums,                                     noOfRandomNums);         // Print the generated random numbers    for(int i = 0; i < noOfRandomNums; i++)    {        Console.Write(randomNums[i] + " ");    }}} // This code is contributed by sapnasingh4991

## Javascript

 
Output:
3 6 12 9 3 6 12 9 3 6

The literal meaning of pseudo is false. These random numbers are called pseudo because some known arithmetic procedure is utilized to generate. Even the generated sequence forms a pattern hence the generated number seems to be random but may not be truly random.

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up