Skip to content
Related Articles

Related Articles

Improve Article

Missing even and odd elements from the given arrays

  • Last Updated : 03 Jun, 2021
Geek Week

Given two integer arrays, even[] and odd[] which contain consecutive even and odd elements respectively, with one element missing from each of the arrays. The task is to find the missing elements.

Examples: 

Input: even[] = {6, 4, 8, 14, 10}, odd[] = {7, 5, 3, 11, 13} 
Output: 
Even = 12 
Odd = 9

Input: even[] = {4, 6, 2, 10}, odd[] = {7, 5, 9, 13, 11, 17} 
Output: 
Even = 8 
Odd = 15

Approach: Store the minimum and the maximum even elements from the even[] array in variables minEven and maxEven. As we know, the sum of first N even numbers is N * (N + 1). Calculate the sum of even numbers from 2 to minEven say sum1 and the sum of even numbers from 2 to maxEven say sum2. Now, the required sum of the even array will be reqSum = sum2 – sum1 + minEven, subtracting the even[] array sum from this reqSum will give us the missing even number. 
Similarly, the missing odd number can also be found as we know that the sum of the first N odd numbers is N2.
Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the missing numbers
void findMissingNums(int even[], int sizeEven, int odd[], int sizeOdd)
{
 
    // To store the minimum and the maximum
    // odd and even elements from the arrays
    int minEven = INT_MAX;
    int maxEven = INT_MIN;
    int minOdd = INT_MAX;
    int maxOdd = INT_MIN;
 
    // To store the sum of the array elements
    int sumEvenArr = 0, sumOddArr = 0;
 
    // Get the minimum and the maximum
    // even elements from the array
    for (int i = 0; i < sizeEven; i++) {
        minEven = min(minEven, even[i]);
        maxEven = max(maxEven, even[i]);
        sumEvenArr += even[i];
    }
 
    // Get the minimum and the maximum
    // odd elements from the array
    for (int i = 0; i < sizeOdd; i++) {
        minOdd = min(minOdd, odd[i]);
        maxOdd = max(maxOdd, odd[i]);
        sumOddArr += odd[i];
    }
 
    // To store the total terms in the series
    // and the required sum of the array
    int totalTerms = 0, reqSum = 0;
 
    // Total terms from 2 to minEven
    totalTerms = minEven / 2;
 
    // Sum of all even numbers from 2 to minEven
    int evenSumMin = totalTerms * (totalTerms + 1);
 
    // Total terms from 2 to maxEven
    totalTerms = maxEven / 2;
 
    // Sum of all even numbers from 2 to maxEven
    int evenSumMax = totalTerms * (totalTerms + 1);
 
    // Required sum for the even array
    reqSum = evenSumMax - evenSumMin + minEven;
 
    // Missing even number
    cout << "Even = " << reqSum - sumEvenArr << "\n";
 
    // Total terms from 1 to minOdd
    totalTerms = (minOdd / 2) + 1;
 
    // Sum of all odd numbers from 1 to minOdd
    int oddSumMin = totalTerms * totalTerms;
 
    // Total terms from 1 to maxOdd
    totalTerms = (maxOdd / 2) + 1;
 
    // Sum of all odd numbers from 1 to maxOdd
    int oddSumMax = totalTerms * totalTerms;
 
    // Required sum for the odd array
    reqSum = oddSumMax - oddSumMin + minOdd;
 
    // Missing odd number
    cout << "Odd = " << reqSum - sumOddArr;
}
 
// Driver code
int main()
{
    int even[] = { 6, 4, 8, 14, 10 };
    int sizeEven = sizeof(even) / sizeof(even[0]);
    int odd[] = { 7, 5, 3, 11, 13 };
    int sizeOdd = sizeof(odd) / sizeof(odd[0]);
    findMissingNums(even, sizeEven, odd, sizeOdd);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
// Function to find the missing numbers
static void findMissingNums(int even[], int sizeEven,
                            int odd[], int sizeOdd)
{
 
    // To store the minimum and the maximum
    // odd and even elements from the arrays
    int minEven =Integer.MAX_VALUE;
    int maxEven =Integer.MIN_VALUE;
    int minOdd = Integer.MAX_VALUE;
    int maxOdd = Integer.MIN_VALUE;
 
    // To store the sum of the array elements
    int sumEvenArr = 0, sumOddArr = 0;
 
    // Get the minimum and the maximum
    // even elements from the array
    for (int i = 0; i < sizeEven; i++)
    {
        minEven = Math.min(minEven, even[i]);
        maxEven = Math.max(maxEven, even[i]);
        sumEvenArr += even[i];
    }
 
    // Get the minimum and the maximum
    // odd elements from the array
    for (int i = 0; i < sizeOdd; i++)
    {
        minOdd = Math.min(minOdd, odd[i]);
        maxOdd = Math.max(maxOdd, odd[i]);
        sumOddArr += odd[i];
    }
 
    // To store the total terms in the series
    // and the required sum of the array
    int totalTerms = 0, reqSum = 0;
 
    // Total terms from 2 to minEven
    totalTerms = minEven / 2;
 
    // Sum of all even numbers
    // from 2 to minEven
    int evenSumMin = (totalTerms *
                     (totalTerms + 1));
 
    // Total terms from 2 to maxEven
    totalTerms = maxEven / 2;
 
    // Sum of all even numbers from
    // 2 to maxEven
    int evenSumMax = (totalTerms *
                     (totalTerms + 1));
 
    // Required sum for the even array
    reqSum = evenSumMax - evenSumMin + minEven;
 
    // Missing even number
    System.out.println("Even = " +
                      (reqSum - sumEvenArr));
 
    // Total terms from 1 to minOdd
    totalTerms = (minOdd / 2) + 1;
 
    // Sum of all odd numbers
    // from 1 to minOdd
    int oddSumMin = totalTerms * totalTerms;
 
    // Total terms from 1 to maxOdd
    totalTerms = (maxOdd / 2) + 1;
 
    // Sum of all odd numbers
    // from 1 to maxOdd
    int oddSumMax = totalTerms * totalTerms;
 
    // Required sum for the odd array
    reqSum = oddSumMax - oddSumMin + minOdd;
 
    // Missing odd number
    System.out.println("Odd = " +
                      (reqSum - sumOddArr));
}
 
// Driver code
public static void main(String[] args)
{
    int even[] = { 6, 4, 8, 14, 10 };
    int sizeEven = even.length;
    int odd[] = { 7, 5, 3, 11, 13 };
    int sizeOdd = odd.length;
    findMissingNums(even, sizeEven,
                     odd, sizeOdd);
}
}
 
// This code is contributed
// by Code_Mech.

Python3




# Python3 implementation of the approach
import sys
 
# Function to find the missing numbers
def findMissingNums(even, sizeEven,
                      odd, sizeOdd):
 
    # To store the minimum and the
    # maximum odd and even elements
    # from the arrays
    minEven = sys.maxsize ;
    maxEven = -(sys.maxsize - 1);
    minOdd = sys.maxsize ;
    maxOdd = -(sys.maxsize - 1);
     
    # To store the sum of the
    # array elements
    sumEvenArr = 0;
    sumOddArr = 0;
 
    # Get the minimum and the maximum
    # even elements from the array
    for i in range(sizeEven) :
        minEven = min(minEven, even[i]);
        maxEven = max(maxEven, even[i]);
        sumEvenArr += even[i];
 
    # Get the minimum and the maximum
    # odd elements from the array
    for i in range(sizeOdd) :
        minOdd = min(minOdd, odd[i]);
        maxOdd = max(maxOdd, odd[i]);
        sumOddArr += odd[i];
     
    # To store the total terms in
    # the series and the required
    # sum of the array
    totalTerms = 0;
    reqSum = 0;
 
    # Total terms from 2 to minEven
    totalTerms = minEven // 2;
 
    # Sum of all even numbers from
    # 2 to minEven
    evenSumMin = (totalTerms *
                 (totalTerms + 1));
 
    # Total terms from 2 to maxEven
    totalTerms = maxEven // 2;
 
    # Sum of all even numbers from
    # 2 to maxEven
    evenSumMax = (totalTerms *
                 (totalTerms + 1));
 
    # Required sum for the even array
    reqSum = (evenSumMax -
              evenSumMin + minEven);
 
    # Missing even number
    print("Even =", reqSum -
                    sumEvenArr);
 
    # Total terms from 1 to minOdd
    totalTerms = (minOdd // 2) + 1;
 
    # Sum of all odd numbers from
    # 1 to minOdd
    oddSumMin = totalTerms * totalTerms;
 
    # Total terms from 1 to maxOdd
    totalTerms = (maxOdd // 2) + 1;
 
    # Sum of all odd numbers from
    # 1 to maxOdd
    oddSumMax = totalTerms * totalTerms;
 
    # Required sum for the odd array
    reqSum = (oddSumMax -
              oddSumMin + minOdd);
 
    # Missing odd number
    print("Odd =", reqSum - sumOddArr);
 
# Driver code
if __name__ == "__main__" :
     
    even = [ 6, 4, 8, 14, 10 ];
    sizeEven = len(even)
    odd = [ 7, 5, 3, 11, 13 ];
    sizeOdd = len(odd) ;
    findMissingNums(even, sizeEven,
                    odd, sizeOdd);
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to find the missing numbers
static void findMissingNums(int []even, int sizeEven,
                            int []odd, int sizeOdd)
{
 
    // To store the minimum and the maximum
    // odd and even elements from the arrays
    int minEven =int.MaxValue;
    int maxEven =int.MinValue;
    int minOdd = int.MaxValue;
    int maxOdd = int.MinValue;
 
    // To store the sum of the array elements
    int sumEvenArr = 0, sumOddArr = 0;
 
    // Get the minimum and the maximum
    // even elements from the array
    for (int i = 0; i < sizeEven; i++)
    {
        minEven = Math.Min(minEven, even[i]);
        maxEven = Math.Max(maxEven, even[i]);
        sumEvenArr += even[i];
    }
 
    // Get the minimum and the maximum
    // odd elements from the array
    for (int i = 0; i < sizeOdd; i++)
    {
        minOdd = Math.Min(minOdd, odd[i]);
        maxOdd = Math.Max(maxOdd, odd[i]);
        sumOddArr += odd[i];
    }
 
    // To store the total terms in the series
    // and the required sum of the array
    int totalTerms = 0, reqSum = 0;
 
    // Total terms from 2 to minEven
    totalTerms = minEven / 2;
 
    // Sum of all even numbers
    // from 2 to minEven
    int evenSumMin = (totalTerms *
                    (totalTerms + 1));
 
    // Total terms from 2 to maxEven
    totalTerms = maxEven / 2;
 
    // Sum of all even numbers from
    // 2 to maxEven
    int evenSumMax = (totalTerms *
                    (totalTerms + 1));
 
    // Required sum for the even array
    reqSum = evenSumMax - evenSumMin + minEven;
 
    // Missing even number
    Console.WriteLine("Even = " +
                    (reqSum - sumEvenArr));
 
    // Total terms from 1 to minOdd
    totalTerms = (minOdd / 2) + 1;
 
    // Sum of all odd numbers
    // from 1 to minOdd
    int oddSumMin = totalTerms * totalTerms;
 
    // Total terms from 1 to maxOdd
    totalTerms = (maxOdd / 2) + 1;
 
    // Sum of all odd numbers
    // from 1 to maxOdd
    int oddSumMax = totalTerms * totalTerms;
 
    // Required sum for the odd array
    reqSum = oddSumMax - oddSumMin + minOdd;
 
    // Missing odd number
    Console.WriteLine("Odd = " +
                    (reqSum - sumOddArr));
}
 
// Driver code
static void Main()
{
    int []even = { 6, 4, 8, 14, 10 };
    int sizeEven = even.Length;
    int []odd = { 7, 5, 3, 11, 13 };
    int sizeOdd = odd.Length;
    findMissingNums(even, sizeEven,
                    odd, sizeOdd);
}
}
 
// This code is contributed
// by chandan_jnu

PHP




<?php
// PHP implementation of the approach
 
// Function to find the missing numbers
function findMissingNums($even, $sizeEven,
                          $odd, $sizeOdd)
{
 
    // To store the minimum and the maximum
    // odd and even elements from the arrays
    $minEven = PHP_INT_MAX;
    $maxEven = PHP_INT_MIN;
    $minOdd = PHP_INT_MAX;
    $maxOdd = PHP_INT_MIN;
 
    // To store the sum of the array elements
    $sumEvenArr = $sumOddArr = 0;
 
    // Get the minimum and the maximum
    // even elements from the array
    for ($i = 0; $i < $sizeEven; $i++)
    {
        $minEven = min($minEven, $even[$i]);
        $maxEven = max($maxEven, $even[$i]);
        $sumEvenArr += $even[$i];
    }
 
    // Get the minimum and the maximum
    // odd elements from the array
    for ($i = 0; $i < $sizeOdd; $i++)
    {
        $minOdd = min($minOdd, $odd[$i]);
        $maxOdd = max($maxOdd, $odd[$i]);
        $sumOddArr += $odd[$i];
    }
 
    // To store the total terms in the series
    // and the required sum of the array
    $totalTerms = $reqSum = 0;
 
    // Total terms from 2 to minEven
    $totalTerms = (int)($minEven / 2);
 
    // Sum of all even numbers
    // from 2 to minEven
    $evenSumMin = $totalTerms *
                 ($totalTerms + 1);
 
    // Total terms from 2 to maxEven
    $totalTerms = (int)($maxEven / 2);
 
    // Sum of all even numbers
    // from 2 to maxEven
    $evenSumMax = $totalTerms *
                 ($totalTerms + 1);
 
    // Required sum for the even array
    $reqSum = ($evenSumMax -
               $evenSumMin + $minEven);
 
    // Missing even number
    echo "Even = " . ($reqSum -
                      $sumEvenArr) . "\n";
 
    // Total terms from 1 to minOdd
    $totalTerms = (int)(($minOdd / 2) + 1);
 
    // Sum of all odd numbers
    // from 1 to minOdd
    $oddSumMin = $totalTerms * $totalTerms;
 
    // Total terms from 1 to maxOdd
    $totalTerms = (int)(($maxOdd / 2) + 1);
 
    // Sum of all odd numbers
    // from 1 to maxOdd
    $oddSumMax = $totalTerms * $totalTerms;
 
    // Required sum for the odd array
    $reqSum = ($oddSumMax -
               $oddSumMin + $minOdd);
 
    // Missing odd number
    echo "Odd = " . ($reqSum - $sumOddArr);
}
 
// Driver code
$even = array( 6, 4, 8, 14, 10 );
$sizeEven = count($even);
$odd = array( 7, 5, 3, 11, 13 );
$sizeOdd = count($odd);
findMissingNums($even, $sizeEven,
                 $odd, $sizeOdd);
 
// This code is contributed
// by chandan_jnu
?>

Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to find the missing numbers
    function findMissingNums(even, sizeEven, odd, sizeOdd)
    {
 
        // To store the minimum and the maximum
        // odd and even elements from the arrays
        let minEven = Number.MAX_VALUE;
        let maxEven = Number.MIN_VALUE;
        let minOdd = Number.MAX_VALUE;
        let maxOdd = Number.MIN_VALUE;
 
        // To store the sum of the array elements
        let sumEvenArr = 0, sumOddArr = 0;
 
        // Get the minimum and the maximum
        // even elements from the array
        for (let i = 0; i < sizeEven; i++)
        {
            minEven = Math.min(minEven, even[i]);
            maxEven = Math.max(maxEven, even[i]);
            sumEvenArr += even[i];
        }
 
        // Get the minimum and the maximum
        // odd elements from the array
        for (let i = 0; i < sizeOdd; i++)
        {
            minOdd = Math.min(minOdd, odd[i]);
            maxOdd = Math.max(maxOdd, odd[i]);
            sumOddArr += odd[i];
        }
 
        // To store the total terms in the series
        // and the required sum of the array
        let totalTerms = 0, reqSum = 0;
 
        // Total terms from 2 to minEven
        totalTerms = parseInt(minEven / 2, 10);
 
        // Sum of all even numbers
        // from 2 to minEven
        let evenSumMin = (totalTerms * (totalTerms + 1));
 
        // Total terms from 2 to maxEven
        totalTerms = parseInt(maxEven / 2, 10);
 
        // Sum of all even numbers from
        // 2 to maxEven
        let evenSumMax = (totalTerms * (totalTerms + 1));
 
        // Required sum for the even array
        reqSum = evenSumMax - evenSumMin + minEven;
 
        // Missing even number
        document.write("Even = " + (reqSum - sumEvenArr) + "</br>");
 
        // Total terms from 1 to minOdd
        totalTerms = parseInt(minOdd / 2, 10) + 1;
 
        // Sum of all odd numbers
        // from 1 to minOdd
        let oddSumMin = totalTerms * totalTerms;
 
        // Total terms from 1 to maxOdd
        totalTerms = parseInt(maxOdd / 2, 10) + 1;
 
        // Sum of all odd numbers
        // from 1 to maxOdd
        let oddSumMax = totalTerms * totalTerms;
 
        // Required sum for the odd array
        reqSum = oddSumMax - oddSumMin + minOdd;
 
        // Missing odd number
        document.write("Odd = " + (reqSum - sumOddArr));
    }
     
    let even = [ 6, 4, 8, 14, 10 ];
    let sizeEven = even.length;
    let odd = [ 7, 5, 3, 11, 13 ];
    let sizeOdd = odd.length;
    findMissingNums(even, sizeEven, odd, sizeOdd);
     
</script>
Output: 
Even = 12
Odd = 9

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :