Given two positive integers A and B, the task is to find the minimum number of increments/decrements required to be performed on either A or B to make both the numbers non-coprime.
Examples:
Input: A = 12, B = 3
Output: 0
Explanation:
As 12 & 3 are already non-coprimes, so the minimum count of increment/decrement operation required is 0.
Input: A = 7, B = 17
Output: 2
Approach: The given problem can be solved based on the following observations:
- If A and B have Greatest Common Divisor greater than 1 then no increment or decrement is to be performed, as numbers are already non-coprime.
- Now, check for the difference of 1 in both directions for A as well as B. Hence it requires only a single step to convert any number to an even number.
- If none of the above two cases applies then 2 increments/decrements operations are required to make the numbers A and B to their nearest even number so that the numbers become non-co primes.
Based on the above observations, follow the steps below to solve the problem:
- If the GCD of A and B is not equal to 1, then print 0 as no operation is required.
- Else if the GCD of one of the pair {{A + 1, B}, {A – 1, B}, {A, B + 1}, {A, B – 1}} is not equal to 1, then print 1 as only one operations is required.
- Otherwise, print 2.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int makeCoprime( int a, int b)
{
if (__gcd(a, b) != 1)
return 0;
if (__gcd(a - 1, b) != 1
or __gcd(a + 1, b) != 1
or __gcd(b - 1, a) != 1
or __gcd(b + 1, a) != 1)
return 1;
return 2;
}
int main()
{
int A = 7, B = 17;
cout << makeCoprime(A, B);
return 0;
}
|
Java
public class GFG
{
static int __gcd( int a, int b)
{
if (a == 0 )
return b;
if (b == 0 )
return a;
if (a == b)
return a;
if (a > b)
return __gcd(a-b, b);
return __gcd(a, b-a);
}
static int makeCoprime( int a, int b)
{
if (__gcd(a, b) != 1 )
return 0 ;
if (__gcd(a - 1 , b) != 1 || __gcd(a + 1 , b) != 1
|| __gcd(b - 1 , a) != 1
|| __gcd(b + 1 , a) != 1 )
return 1 ;
return 2 ;
}
public static void main(String args[])
{
int A = 7 , B = 17 ;
System.out.println(makeCoprime(A, B));
}
}
|
Python3
from math import gcd
def makeCoprime(a, b):
if (gcd(a, b) ! = 1 ):
return 0
if (gcd(a - 1 , b) ! = 1 or
gcd(a + 1 , b) ! = 1 or
gcd(b - 1 , a) ! = 1 or
gcd(b + 1 , a) ! = 1 ):
return 1
return 2
if __name__ = = '__main__' :
A = 7
B = 17
print (makeCoprime(A, B))
|
C#
using System;
class GFG{
static int __gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
if (a == b)
return a;
if (a > b)
return __gcd(a - b, b);
return __gcd(a, b - a);
}
static int makeCoprime( int a, int b)
{
if (__gcd(a, b) != 1)
return 0;
if (__gcd(a - 1, b) != 1 ||
__gcd(a + 1, b) != 1 ||
__gcd(b - 1, a) != 1 ||
__gcd(b + 1, a) != 1)
return 1;
return 2;
}
public static void Main(String[] args)
{
int A = 7, B = 17;
Console.Write(makeCoprime(A, B));
}
}
|
Javascript
<script>
function __gcd(a, b) {
if (b == 0)
return a;
return __gcd(b, a % b);
}
function makeCoprime(a, b) {
if (__gcd(a, b) != 1)
return 0;
if (__gcd(a - 1, b) != 1
|| __gcd(a + 1, b) != 1
|| __gcd(b - 1, a) != 1
|| __gcd(b + 1, a) != 1)
return 1;
return 2;
}
let A = 7, B = 17;
document.write(makeCoprime(A, B));
</script>
|
Time Complexity: O(log(A, B))
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
02 Aug, 2021
Like Article
Save Article