Open In App
Related Articles

Minimum number of increment / decrements required to be performed on one of the two given numbers to make them non-coprime

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two positive integers A and B, the task is to find the minimum number of increments/decrements required to be performed on either A or B to make both the numbers non-coprime.

Examples:

Input: A = 12, B = 3
Output: 0
Explanation:
As 12 & 3 are already non-coprimes, so the minimum count of increment/decrement operation required is 0.

Input: A = 7, B = 17
Output: 2

Approach: The given problem can be solved based on the following observations:

  • If A and B have Greatest Common Divisor greater than 1 then no increment or decrement is to be performed, as numbers are already non-coprime.
  • Now, check for the difference of 1 in both directions for A as well as B. Hence it requires only a single step to convert any number to an even number.
  • If none of the above two cases applies then 2 increments/decrements operations are required to make the numbers A and B to their nearest even number so that the numbers become non-co primes.

Based on the above observations, follow the steps below to solve the problem:

  • If the GCD of A and B is not equal to 1, then print 0 as no operation is required.
  • Else if the GCD of one of the pair {{A + 1, B}, {A – 1, B}, {A, B + 1}, {A, B – 1}} is not equal to 1, then print 1 as only one operations is required.
  • Otherwise, print 2.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number of
// increments/decrements operations required
// to make both the numbers non-coprime
int makeCoprime(int a, int b)
{
    // If a & b are already non-coprimes
    if (__gcd(a, b) != 1)
        return 0;
 
    // If a & b can become non-coprimes
    // by only incrementing/decrementing
    // a number only once
    if (__gcd(a - 1, b) != 1
        or __gcd(a + 1, b) != 1
        or __gcd(b - 1, a) != 1
        or __gcd(b + 1, a) != 1)
        return 1;
 
    // Otherwise
    return 2;
}
 
// Driver Code
int main()
{
    int A = 7, B = 17;
    cout << makeCoprime(A, B);
 
    return 0;
}


Java




// Java program for the above approach
public class GFG
{
 
  // function to calculate gcd
  static int __gcd(int a, int b)
  {
     
    // Everything divides 0
    if (a == 0)
      return b;
    if (b == 0)
      return a;
 
    // base case
    if (a == b)
      return a;
 
    // a is greater
    if (a > b)
      return __gcd(a-b, b);
    return __gcd(a, b-a);
  }
 
  // Function to find the minimum number of
  // increments/decrements operations required
  // to make both the numbers non-coprime
  static int makeCoprime(int a, int b)
  {
 
    // If a & b are already non-coprimes
    if (__gcd(a, b) != 1)
      return 0;
 
    // If a & b can become non-coprimes
    // by only incrementing/decrementing
    // a number only once
    if (__gcd(a - 1, b) != 1 || __gcd(a + 1, b) != 1
        || __gcd(b - 1, a) != 1
        || __gcd(b + 1, a) != 1)
      return 1;
 
    // Otherwise
    return 2;
  }
 
  // Driver code
  public static void main(String args[])
  {
    int A = 7, B = 17;
    System.out.println(makeCoprime(A, B));
  }
}
 
// This code is contributed by SoumikMondal


Python3




# Python3 program for the above approach
from math import gcd
 
# Function to find the minimum number of
# increments/decrements operations required
# to make both the numbers non-coprime
def makeCoprime(a, b):
     
    # If a & b are already non-coprimes
    if (gcd(a, b) != 1):
        return 0
 
    # If a & b can become non-coprimes
    # by only incrementing/decrementing
    # a number only once
    if (gcd(a - 1, b) != 1 or
        gcd(a + 1, b) != 1 or
        gcd(b - 1, a) != 1 or
        gcd(b + 1, a) != 1):
        return 1
 
    # Otherwise
    return 2
 
# Driver Code
if __name__ == '__main__':
     
    A = 7
    B = 17
     
    print(makeCoprime(A, B))
 
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to calculate gcd
static int __gcd(int a, int b)
{
     
    // Everything divides 0
    if (a == 0)
        return b;
    if (b == 0)
        return a;
     
    // Base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
         
    return __gcd(a, b - a);
}
 
// Function to find the minimum number of
// increments/decrements operations required
// to make both the numbers non-coprime
static int makeCoprime(int a, int b)
{
     
    // If a & b are already non-coprimes
    if (__gcd(a, b) != 1)
        return 0;
     
    // If a & b can become non-coprimes
    // by only incrementing/decrementing
    // a number only once
    if (__gcd(a - 1, b) != 1 ||
        __gcd(a + 1, b) != 1 ||
        __gcd(b - 1, a) != 1 ||
        __gcd(b + 1, a) != 1)
        return 1;
     
    // Otherwise
    return 2;
}
 
// Driver Code
public static void Main(String[] args)
{
    int A = 7, B = 17;
     
    Console.Write(makeCoprime(A, B));
}
}
 
// This code is contributed by sanjoy_62


Javascript




<script>
 
        // JavaScript program for the above approach
 
        function __gcd(a, b) {
            if (b == 0)
                return a;
            return __gcd(b, a % b);
 
        }
 
        // Function to find the minimum number of
        // increments/decrements operations required
        // to make both the numbers non-coprime
        function makeCoprime(a, b) {
            // If a & b are already non-coprimes
            if (__gcd(a, b) != 1)
                return 0;
 
            // If a & b can become non-coprimes
            // by only incrementing/decrementing
            // a number only once
            if (__gcd(a - 1, b) != 1
                || __gcd(a + 1, b) != 1
                || __gcd(b - 1, a) != 1
                || __gcd(b + 1, a) != 1)
                return 1;
 
            // Otherwise
            return 2;
        }
 
        // Driver Code
 
        let A = 7, B = 17;
        document.write(makeCoprime(A, B));
 
    // This code is contributed by Potta Lokesh
  
</script>


Output: 

2

 

Time Complexity: O(log(A, B))
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 02 Aug, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials