Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Check if two numbers are co-prime or not

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Two numbers A and B are said to be Co-Prime or mutually prime if the Greatest Common Divisor of them is 1. You have been given two numbers A and B, find if they are Co-prime or not.
Examples : 
 

Input : 2 3
Output : Co-Prime

Input : 4 8
Output : Not Co-Prime

 

 

C++




// CPP program to check if two 
// numbers are co-prime or not
#include<bits/stdc++.h>
using namespace std;
  
// function to check and print if 
// two numbers are co-prime or not 
void coprime(int a, int b) {
      
    if ( __gcd(a, b) == 1)
        cout << "Co-Prime" << endl; 
    else
        cout << "Not Co-Prime" << endl;        
}
  
// driver code
int main()
{
    int a = 5, b = 6;
    coprime(a, b);    
    a = 8, b = 16;
    coprime(a, b);        
    return 0;
}

Java




// Java program to check if two 
// numbers are co-prime or not
import java.io.*;
public class GFG {
      
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0 
        if (a == 0 || b == 0)
            return 0;
          
        // base case
        if (a == b)
            return a;
          
        // a is greater
        if (a > b)
            return __gcd(a-b, b);
                  
        return __gcd(a, b-a);
    }
      
    // function to check and print if 
    // two numbers are co-prime or not 
    static void coprime(int a, int b) {
          
        if ( __gcd(a, b) == 1)
            System.out.println("Co-Prime"); 
        else
            System.out.println("Not Co-Prime");     
    }
      
    //driver code
    public static void main (String[] args)
    {
        int a = 5, b = 6;
        coprime(a, b); 
          
        a = 8; b = 16;
        coprime(a, b); 
    }
}
  
// This code is contributed by Anant Agarwal.

Python3




   
# Python3 program to check if two 
# numbers are co-prime or not
  
# Recursive function to
# return gcd of a and b
def __gcd(a, b):
  
    # Everything divides 0 
    if (a == 0 or b == 0): return 0
      
    # base case
    if (a == b): return a
      
    # a is greater
    if (a > b): 
        return __gcd(a - b, b)
              
    return __gcd(a, b - a)
  
# Function to check and print if 
# two numbers are co-prime or not 
def coprime(a, b):
      
    if ( __gcd(a, b) == 1):
        print("Co-Prime")
    else:
        print("Not Co-Prime")     
  
# Driver code
a = 5; b = 6
coprime(a, b) 
  
a = 8; b = 16
coprime(a, b)
  
# This code is contributed by Anant Agarwal

C#




// C# program to check if two
// numbers are co-prime or not
using System;
  
class GFG {
  
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
  
        // base case
        if (a == b)
            return a;
  
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
  
        return __gcd(a, b - a);
    }
  
    // function to check and print if
    // two numbers are co-prime or not
    static void coprime(int a, int b) {
  
        if (__gcd(a, b) == 1)
            Console.WriteLine("Co-Prime");
        else
            Console.WriteLine("Not Co-Prime");
    }
  
    // Driver code
    public static void Main()
    {
        int a = 5, b = 6;
        coprime(a, b);
        a = 8;
        b = 16;
        coprime(a, b);
    }
}
  
// This code is contributed by Anant Agarwal.

PHP




<?php
// PHP program to check if two
// numbers are co-prime or not
  
// Recursive function to
// return gcd of a and b
function __gcd($a, $b)
    {
        // Everything divides 0
        if ($a == 0 || $b == 0)
            return 0;
  
        // base case
        if ($a == $b)
            return $a;
  
        // a is greater
        if ($a > $b)
            return __gcd($a - $b, $b);
  
        return __gcd($a, $b - $a);
    }
  
    // function to check and print if
    // two numbers are co-prime or not
function coprime($a, $b
{
    if (__gcd($a, $b) == 1)
        echo "Co-Prime","\n";
    else
        echo "Not Co-Prime","\n";
}
  
// Driver Code
$a = 5; $b = 6;
coprime($a, $b);
$a = 8;
$b = 16;
coprime($a, $b);
  
// This code is contributed by aj_36
?>

Javascript




<script>
  
// Javascript program to check if two
// numbers are co-prime or not
  
// Recursive function to
// return gcd of a and b
function __gcd(a, b)
{
      
    // Everything divides 0 
    if (a == 0 || b == 0)
        return 0;
      
    // Base case
    if (a == b)
        return a;
      
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
              
    return __gcd(a, b - a);
}
  
// Function to check and print if 
// two numbers are co-prime or not 
function coprime(a, b)
{
    if (__gcd(a, b) == 1)
        document.write("Co-Prime" + "<br>"); 
    else
        document.write("Not Co-Prime");     
}
  
  
// Driver Code
var a = 5, b = 6;
coprime(a, b); 
  
a = 8; b = 16;
coprime(a, b); 
  
// This code is contributed by Kirti
  
</script>

Output

Co-Prime
Not Co-Prime

Time Complexity: O(log(max(a,b)))

Auxiliary Space: O(1)

This article is contributed by Dibyendu Roy Chaudhuri. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Last Updated : 16 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials