Check if two numbers are co-prime or not
Two numbers A and B are said to be Co-Prime or mutually prime if the Greatest Common Divisor of them is 1. You have been given two numbers A and B, find if they are Co-prime or not.
Examples :
Input : 2 3 Output : Co-Prime Input : 4 8 Output : Not Co-Prime
C++
// CPP program to check if two // numbers are co-prime or not #include<bits/stdc++.h> using namespace std; // function to check and print if // two numbers are co-prime or not void coprime( int a, int b) { if ( __gcd(a, b) == 1) cout << "Co-Prime" << endl; else cout << "Not Co-Prime" << endl; } // driver code int main() { int a = 5, b = 6; coprime(a, b); a = 8, b = 16; coprime(a, b); return 0; } |
Java
// Java program to check if two // numbers are co-prime or not import java.io.*; public class GFG { // Recursive function to // return gcd of a and b static int __gcd( int a, int b) { // Everything divides 0 if (a == 0 || b == 0 ) return 0 ; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a-b, b); return __gcd(a, b-a); } // function to check and print if // two numbers are co-prime or not static void coprime( int a, int b) { if ( __gcd(a, b) == 1 ) System.out.println( "Co-Prime" ); else System.out.println( "Not Co-Prime" ); } //driver code public static void main (String[] args) { int a = 5 , b = 6 ; coprime(a, b); a = 8 ; b = 16 ; coprime(a, b); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 program to check if two # numbers are co-prime or not # Recursive function to # return gcd of a and b def __gcd(a, b): # Everything divides 0 if (a = = 0 or b = = 0 ): return 0 # base case if (a = = b): return a # a is greater if (a > b): return __gcd(a - b, b) return __gcd(a, b - a) # Function to check and print if # two numbers are co-prime or not def coprime(a, b): if ( __gcd(a, b) = = 1 ): print ( "Co-Prime" ) else : print ( "Not Co-Prime" ) # Driver code a = 5 ; b = 6 coprime(a, b) a = 8 ; b = 16 coprime(a, b) # This code is contributed by Anant Agarwal |
C#
// C# program to check if two // numbers are co-prime or not using System; class GFG { // Recursive function to // return gcd of a and b static int __gcd( int a, int b) { // Everything divides 0 if (a == 0 || b == 0) return 0; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a - b, b); return __gcd(a, b - a); } // function to check and print if // two numbers are co-prime or not static void coprime( int a, int b) { if (__gcd(a, b) == 1) Console.WriteLine( "Co-Prime" ); else Console.WriteLine( "Not Co-Prime" ); } // Driver code public static void Main() { int a = 5, b = 6; coprime(a, b); a = 8; b = 16; coprime(a, b); } } // This code is contributed by Anant Agarwal. |
PHP
<?php // PHP program to check if two // numbers are co-prime or not // Recursive function to // return gcd of a and b function __gcd( $a , $b ) { // Everything divides 0 if ( $a == 0 || $b == 0) return 0; // base case if ( $a == $b ) return $a ; // a is greater if ( $a > $b ) return __gcd( $a - $b , $b ); return __gcd( $a , $b - $a ); } // function to check and print if // two numbers are co-prime or not function coprime( $a , $b ) { if (__gcd( $a , $b ) == 1) echo "Co-Prime" , "\n" ; else echo "Not Co-Prime" , "\n" ; } // Driver Code $a = 5; $b = 6; coprime( $a , $b ); $a = 8; $b = 16; coprime( $a , $b ); // This code is contributed by aj_36 ?> |
Javascript
<script> // Javascript program to check if two // numbers are co-prime or not // Recursive function to // return gcd of a and b function __gcd(a, b) { // Everything divides 0 if (a == 0 || b == 0) return 0; // Base case if (a == b) return a; // a is greater if (a > b) return __gcd(a - b, b); return __gcd(a, b - a); } // Function to check and print if // two numbers are co-prime or not function coprime(a, b) { if (__gcd(a, b) == 1) document.write( "Co-Prime" + "<br>" ); else document.write( "Not Co-Prime" ); } // Driver Code var a = 5, b = 6; coprime(a, b); a = 8; b = 16; coprime(a, b); // This code is contributed by Kirti </script> |
Output
Co-Prime Not Co-Prime
Time Complexity: O(log(max(a,b)))
Auxiliary Space: O(1)
This article is contributed by Dibyendu Roy Chaudhuri. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...