Minimum number of given operation required to convert n to m

Given two integers n and m, in a single operation n can be multiplied by either 2 or 3. The task is to convert n to m with minimum number of given operation. If it is impossible to convert n to m with the given operation then print -1.

Examples:

Input: n = 120, m = 51840
Output: 7
120 * 2 * 2 * 2 * 2 * 3 * 3 * 3 = 51840



Input: n = 42, m = 42
Output: 0
No operation required.

Input: n = 48, m = 72
Output: -1

Approach: If m is not divisible by n then print -1 as n cannot be converted to m with the given operation. Else we can check if on dividing, the quotient has only 2 and 3 as prime factors. If yes then the result will be the sum of powers of 2 and 3 else print -1

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the minimum
// operations required
int minOperations(int n, int m)
{
    if (m % n != 0)
        return -1;
  
    int minOperations = 0;
    int q = m / n;
  
    // Counting all 2s
    while (q % 2 == 0) {
        q = q / 2;
        minOperations++;
    }
  
    // Counting all 3s
    while (q % 3 == 0) {
        q = q / 3;
        minOperations++;
    }
  
    // If q contained only 2 and 3
    // as the only prime factors
    // then it must be 1 now
    if (q == 1)
        return minOperations;
  
    return -1;
}
  
// Driver code
int main()
{
    int n = 120, m = 51840;
    cout << minOperations(n, m);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GfG {
  
    // Function to return the minimum
    // operations required
    static int minOperations(int n, int m)
    {
        if (m % n != 0)
            return -1;
  
        int minOperations = 0;
        int q = m / n;
  
        // Counting all 2s
        while (q % 2 == 0) {
            q = q / 2;
            minOperations++;
        }
  
        // Counting all 3s
        while (q % 3 == 0) {
            q = q / 3;
            minOperations++;
        }
  
        // If q contained only 2 and 3
        // as the only prime factors
        // then it must be 1 now
        if (q == 1)
            return minOperations;
  
        return -1;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int n = 120, m = 51840;
        System.out.println(minOperations(n, m));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to return the minimum
# operations required
def minOperations(n, m):
    if (m % n != 0):
        return -1
  
    minOperations = 0
    q = int(m / n)
  
    # Counting all 2s
    while (q % 2 == 0):
        q = int(q / 2)
        minOperations += 1
  
    # Counting all 3s
    while (q % 3 == 0):
        q = int(q / 3)
        minOperations += 1
  
    # If q contained only 2 and 3
    # as the only prime factors
    # then it must be 1 now
    if (q == 1):
        return minOperations
  
    return -1
  
# Driver code
if __name__ == '__main__':
    n = 120
    m = 51840
    print(minOperations(n, m))
      
# This code is contributed by
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG 
{
  
// Function to return the minimum
// operations required
static int minOperations(int n, int m)
{
    if (m % n != 0)
        return -1;
  
    int minOperations = 0;
    int q = m / n;
  
    // Counting all 2s
    while (q % 2 == 0)
    {
        q = q / 2;
        minOperations++;
    }
  
    // Counting all 3s
    while (q % 3 == 0)
    {
        q = q / 3;
        minOperations++;
    }
  
    // If q contained only 2 and 3
    // as the only prime factors
    // then it must be 1 now
    if (q == 1)
        return minOperations;
  
    return -1;
}
  
// Driver code
public static void Main()
{
    int n = 120, m = 51840;
    Console.WriteLine(minOperations(n, m));
}
}
  
// This code is contributed 
// by Akanksha Rai

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to return the minimum
// operations required
function minOperations($n, $m)
{
    if ($m % $n != 0)
        return -1;
  
    $minOperations = 0;
    $q = $m / $n;
  
    // Counting all 2s
    while ($q % 2 == 0) 
    {
        $q = $q / 2;
        $minOperations++;
    }
  
    // Counting all 3s
    while ($q % 3 == 0) 
    {
        $q = $q / 3;
        $minOperations++;
    }
  
    // If q contained only 2 and 3
    // as the only prime factors
    // then it must be 1 now
    if ($q == 1)
        return $minOperations;
  
    return -1;
}
  
// Driver code
$n = 120; $m = 51840;
echo(minOperations($n, $m));
  
// This code is contributed by Code_Mech
?>

chevron_right


Output:

7


My Personal Notes arrow_drop_up

Never Stop Learning

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.