Related Articles

Related Articles

Minimum number of flips required such that the last cell of matrix can be reached from any other cell
  • Last Updated : 02 Dec, 2020

Given a matrix arr[][] of dimensions N * M where each cell consists of characters ‘R’ or ‘D’ except the cell arr[N][M] which contains ‘F’. ‘R’ and ‘D’ denotes that the player can move in the right and down direction respectively from the current cell. The task is to find the minimum number of characters required to be flipped from ‘R’ to ‘D’ or ‘D’ to ‘R’ such that it is possible to reach the finishing cell i.e., arr[N][M] from every cell.

Examples:

Input: N = 2, M = 3, arr[][] = {{D, D, R}, {R, R, F}}
Output: 1
Explanation: After changing the direction of (1, 3) to ‘D’, each cell can reach the finishing point.

Input: N = 1, M = 3, arr[1][3] = {{D, D, F}}
Output: 2

Approach: The problem can be solved by observing that each cell can reach the finishing point after changing the following cells:



  • Change all the ‘D’s to ‘R’ in the last row.
  • Change all the ‘R’ to ‘D’ in the last column.

Follow the steps below to solve the problem:

  1. Initialize a variable, say ans, to store the minimum number of flips.
  2. Traverse from i = 0 to N – 1 and count the number of cells arr[i][M-1] which contains ‘R’.
  3. Traverse from i = 0 to M – 1 and count the number of cells arr[N – 1][i] which contains ‘D’.
  4. Print the sum of the two counts obtained in the above step as the required answer.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the minimum
// number of flips required
int countChanges(vector<vector<char> > mat)
{
    // Dimensions of mat[][]
    int n = mat.size();
    int m = mat[0].size();
 
    // Initialize answer
    int ans = 0;
 
    // Count all 'D's in the last row
    for (int j = 0; j < m - 1; j++) {
        if (mat[n - 1][j] != 'R')
            ans++;
    }
 
    // Count all 'R's in the last column
    for (int i = 0; i < n - 1; i++) {
        if (mat[i][m - 1] != 'D')
            ans++;
    }
 
    // Print answer
    return ans;
}
 
// Driver Code
int main()
{
    // Given matrix
    vector<vector<char> > arr = { { 'R', 'R', 'R', 'D' },
                                  { 'D', 'D', 'D', 'R' },
                                  { 'R', 'D', 'R', 'F' } };
 
    // Function call
    int cnt = countChanges(arr);
 
    // Print answer
    cout << cnt << endl;
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to calculate the minimum
// number of flips required    
public static int countChanges(char mat[][])
{
     
    // Dimensions of mat[][]
    int n = mat.length;
    int m = mat[0].length;
 
    // Initialize answer
    int ans = 0;
 
    // Count all 'D's in the last row
    for(int j = 0; j < m - 1; j++)
    {
        if (mat[n - 1][j] != 'R')
            ans++;
    }
 
    // Count all 'R's in the last column
    for(int i = 0; i < n - 1; i++)
    {
        if (mat[i][m - 1] != 'D')
            ans++;
    }
     
    // Print answer
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    char arr[][] = { { 'R', 'R', 'R', 'D' },
                     { 'D', 'D', 'D', 'R' },
                     { 'R', 'D', 'R', 'F' } };
 
    // Function call
    int cnt = countChanges(arr);
 
    // Print answer
    System.out.println(cnt);
}
}
 
// This code is contributed by Manu Pathria

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
  
# Function to calculate the minimum
# number of flips required
def countChanges(mat):
     
    # Dimensions of mat[][]
    n = len(mat)
    m = len(mat[0])
  
    # Initialize answer
    ans = 0
  
    # Count all 'D's in the last row
    for j in range(m - 1):
        if (mat[n - 1][j] != 'R'):
            ans += 1
             
    # Count all 'R's in the last column
    for i in range(n - 1):
        if (mat[i][m - 1] != 'D'):
            ans += 1
 
    # Print answer
    return ans
 
# Driver Code
 
# Given matrix
arr = [ [ 'R', 'R', 'R', 'D' ] ,
        [ 'D', 'D', 'D', 'R' ],
        [ 'R', 'D', 'R', 'F' ] ]
  
# Function call
cnt = countChanges(arr)
  
# Print answer   
print(cnt)
 
# This code is contributed by susmitakundugoaldanga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG{
     
// Function to calculate the minimum
// number of flips required    
public static int countChanges(char [,]mat)
{
     
    // Dimensions of [,]mat
    int n = mat.GetLength(0);
    int m = mat.GetLength(1);
     
    // Initialize answer
    int ans = 0;
     
    // Count all 'D's in the last row
    for(int j = 0; j < m - 1; j++)
    {
        if (mat[n - 1,j] != 'R')
            ans++;
    }
 
    // Count all 'R's in the last column
    for(int i = 0; i < n - 1; i++)
    {
        if (mat[i,m - 1] != 'D')
            ans++;
    }
     
    // Print answer
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    char [,]arr = { { 'R', 'R', 'R', 'D' },
                    { 'D', 'D', 'D', 'R' },
                    { 'R', 'D', 'R', 'F' } };
 
    // Function call
    int cnt = countChanges(arr);
 
    // Print answer
    Console.WriteLine(cnt);
}
}
 
// This code is contributed by Princi Singh

chevron_right


Output: 

2

 

Time Complexity: O(N*M)
Auxiliary Space: O(N*M)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :